Found 879 results
Journal Article
Authors: Sigsbee K., Kletzing C A, Smith C W, MacDowall Robert, Spence Harlan, et al.
Title: Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
Abstract: We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12–14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC wa. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020877 Available at:
More Details
Authors: Ni Binbin, Zou Zhengyang, Gu Xudong, Zhou Chen, Thorne Richard M, et al.
Title: Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
Abstract: Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90° pitch angle with n-values of 2–3 as a supportive signature of chorus acceleration outside the pla. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021065 Available at:
More Details
Authors: Matsuda Shoya, Kasahara Yoshiya, and Kletzing Craig A.
Title: Variation in crossover frequency of EMIC waves in plasmasphere estimated from ion cyclotron whistler waves observed by Van Allen Probe A
Abstract: We report variations in the propagation of the H+ band ion cyclotron whistlers observed by Van Allen Probe A. Ion cyclotron whistlers are one of the EMIC (electromagnetic ion cyclotron) waves generated by mode conversion from lightning whistlers. Crossover frequency is an important frequency for the ion cyclotron whistlers, which is a function of the variations in the local heavy-ion composition. We surveyed waveform data obtained by the Electric and Magnetic Field Instrument and Integrated Science instrument and found that 3461 H+ band ion cyclotron whistlers were observed from 572 km to 5992 km in altitude. The main finding is that the crossover frequencies of the observed events decreased with increasing altitude. These results support the hypothesis that the total heavy-ion density dec. . .
Date: 01/2016 Publisher: Geophysical Research Letters Pages: 28 - 34 DOI: 10.1002/2015GL066893 Available at:
More Details
Authors: Malaspina David M., Ripoll Jean-Francois, Chu Xiangning, Hospodarsky George, and Wygant John
Title: Variation in Plasmaspheric Hiss Wave Power With Plasma Density
Abstract: Plasmaspheric hiss waves are commonly observed in the inner magnetosphere. These waves efficiently scatter electrons, facilitating their precipitation into the atmosphere. Predictive inner magnetosphere simulations often model hiss waves using parameterized empirical maps of observed hiss power. These maps nearly always include parameterization by magnetic L value. In this work, data from the Van Allen Probes are used to compare variation in hiss wave power with variation in both L value and cold plasma density. It is found that for L> 2.5, plasmaspheric hiss wave power increases with plasma density. For L> 3, this increase is stronger and occurs regardless of L value and for all local times. This result suggests that the current paradigm for parameterizing hiss wave power in many magnetos. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078564 Available at:
More Details
Authors: Pandya Megha, Veenadhari B., Ebihara Y., Kanekal S.G., and Baker D.N.
Title: Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations
Abstract: Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron‐Proton Telescope (REPT) instrument on board Van‐Allen Probes from Oct‐2012 to May‐2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L‐values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70% cases the electron flux remains stable, while at L = 5, for ~82% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53% of the CIR storms and 30% of the CME storms show electro. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026771 Available at:
More Details
Authors: Chen Zhe, Chen HongFei, Li YiFan, Xiang HongWen, Yu XiangQian, et al.
Title: Variations of the relativistic electron flux after a magnetospheric compression event
Abstract: On January 21, 2015, a sharp increase of the solar wind dynamic pressure impacted the magnetosphere. The magnetopause moved inward to the region L< 8 without causing a geomagnetic storm. The flux of the relativistic electrons in the outer radiation belt decreased by half during this event based on the observations of the particle radiation monitor (PRM) of the fourth of the China-Brazil Earth Resource Satellites (CBERS-4). The flux remained low for approximately 11 d; it did not recover after a small magnetic storm on January 26 but after a small magnetic storm on February 2. The loss and recovery of the relativistic electrons during this event are investigated using the PRM data, medium- and high-energy electron observations of NOAA-15 and the Van Allen Probes, medium-energy electron obse. . .
Date: 04/2017 Publisher: Science China Technological Sciences Pages: 638 - 647 DOI: 10.1007/s11431-016-9008-3 Available at:
More Details
Authors: Kennel C F
Title: Velocity Space Diffusion from Weak Plasma Turbulence in a Magnetic Field
Abstract: The quasi‐linear velocity space diffusion is considered for waves of any oscillation branch propagating at an arbitrary angle to a uniform magnetic field in a spatially uniform plasma. The space‐averaged distribution function is assumed to change slowly compared to a gyroperiod and characteristic times of the wave motion. Nonlinear mode coupling is neglected. An H‐like theorem shows that both resonant and nonresonant quasi‐linear diffusion force the particle distributions towards marginal stablity. Creation of the marginally stable state in the presence of a sufficiently broad wave spectrum in general involves diffusing particles to infinite energies, and so the marginally stable plateau is not accessible physically, except in special cases. Resonant particles with velocities much . . .
Date: 12/1966 Publisher: Physics of Fluids Pages: 2377 DOI: 10.1063/1.1761629 Available at:
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O. V., Krasnoselskikh V., and Mozer F.S.
Title: Very Oblique Whistler Generation By Low Energy Electron Streams
Abstract: Whistler-mode chorus waves are present throughout the Earth's outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution poss. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021135 Available at:
More Details
Authors: Ma Q, Artemyev A. V., Mourenas D., Li W, Thorne R M, et al.
Title: Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping
Abstract: Satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ∼ 100–200. Further comparing measured refractive indexes with theoretical estimates incorporating hot . . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075892 Available at:
More Details
Authors: Ma Qianli, Mourenas Didier, Li Wen, Artemyev Anton, and Thorne Richard M
Title: VLF waves from ground-based transmitters observed by the Van Allen Probes: Statistical model and effects on plasmaspheric electrons
Abstract: Whistler-mode Very Low Frequency (VLF) waves from powerful ground-based transmitters can resonantly scatter energetic plasmaspheric electrons and precipitate them into the atmosphere. A comprehensive 4-year statistics of Van Allen Probes measurements is carried out to assess their consequences on the dynamics of the inner radiation belt and slot region. Statistical models of the measured wave electric field power and of the inferred full wave magnetic amplitude are provided as a function of L, magnetic local time, season, and Kp over L=1-3, revealing the localization of VLF wave intensity and its variation with geomagnetic activity over 2012-2016. Since this VLF wave model can be directly used together with existing hiss and lightning-generated wave models in radiation belt simulation code. . .
Date: 06/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073885 Available at:
More Details
Authors: Nakayama Y., Ebihara Y., Ohtani S, Gkioulidou M., Takahashi K., et al.
Title: Void structure of O + ions in the inner magnetosphere observed by the Van Allen Probes
Abstract: The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy ~10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamic. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023013 Available at:
More Details
Authors: Jahn J -M, Goldstein J, Reeves G D, Fernandes P. A., Skoug R M, et al.
Title: The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015
Abstract: Ionospheric heavy ions play an important role in the dynamics of Earth's magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the plasmasphere and the ring current. Lastly, cold lighter ions from the mid-latitude ionosphere create the co-rotating plasmasphere whose outer regions can interact with the plasma cloak, plasma sheet, ring current, and outer electron belt. In this paper we present a statistical view o. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024183 Available at:
More Details
Authors: Horne Richard B, Thorne Richard M, Shprits Yuri Y, Meredith Nigel P, Glauert Sarah A, et al.
Title: Wave acceleration of electrons in the Van Allen radiation belts
Abstract: The Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth6, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase . . .
Date: 09/2005 Publisher: Nature Pages: 227 - 230 DOI: 10.1038/nature03939 Available at:
More Details
Authors: Artemyev A.V., Agapitov O.V., Mourenas D., Krasnoselskikh V.V., and Mozer F.S.
Title: Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Abstract: Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heat. . .
Date: 05/2015 Publisher: Nature Communications Pages: 8143 DOI: 10.1038/ncomms8143 Available at:
More Details
Authors: Taubenschuss Ulrich, Khotyaintsev Yuri V., ík Ondrej, Vaivads Andris, Cully Christopher M., et al.
Title: Wave normal angles of whistler-mode chorus rising and falling tones
Abstract: We present a study of wave normal angles (θk) of whistler mode chorus emission as observed by Time History of Events and Macroscale Interactions during Substorms (THEMIS) during the year 2008. The three inner THEMIS satellites THA, THD, and THE usually orbit Earth close to the dipole magnetic equator (±20°), covering a large range of L shells from the plasmasphere out to the magnetopause. Waveform measurements of electric and magnetic fields enable a detailed polarization analysis of chorus below 4 kHz. When displayed in a frequency-θk histogram, four characteristic regions of occurrence are evident. They are separated by gaps at f/fc,e≈0.5 (f is the chorus frequency, fc,e is the local electron cyclotron frequency) and at θk∼40°. Below θk∼40°, the average value for θk is pre. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020575 Available at:
More Details
Authors: Xiao Fuliang, Yang Chang, Su Zhenpeng, Zhou Qinghua, He Zhaoguo, et al.
Title: Wave-driven butterfly distribution of Van Allen belt relativistic electrons
Abstract: Van Allen radiation belts consist of relativistic electrons trapped by Earth's magnetic field. Trapped electrons often drift azimuthally around Earth and display a butterfly pitch angle distribution of a minimum at 90° further out than geostationary orbit. This is usually attributed to drift shell splitting resulting from day–night asymmetry in Earth’s magnetic field. However, direct observation of a butterfly distribution well inside of geostationary orbit and the origin of this phenomenon have not been provided so far. Here we report high-resolution observation that a unusual butterfly pitch angle distribution of relativistic electrons occurred within 5 Earth radii during the 28 June 2013 geomagnetic storm. Simulation results show that combined acceleration by chorus and magnetosoni. . .
Date: 05/2015 Publisher: Nature Communications Pages: 8590 DOI: 10.1038/ncomms9590 Available at:
More Details
Authors: He Zhaoguo, Yan Qi, Chu Yuchuan, and Cao Yong
Title: Wave-driven gradual loss of energetic electrons in the slot region
Abstract: Resonant pitch angle scattering by plasmaspheric hiss has long been considered to be responsible for the energetic electron loss in the slot region, but the detailed quantitative comparison between theory and observations is still lacking. Here we focus on the loss of 100–600 keV electrons at L = 3 during the recovery phase of a geomagnetic storm on 28 June 2013. Van Allen Probes data showed the concurrence of intense (with power up to 10−4 nT2/Hz) plasmaspheric hiss waves and significant (up to 1 order) loss of energetic electrons within 2 days. Our quasi-linear diffusion simulations show that hiss scattering can basically reproduce the temporal evolution of the angular distribution of the observed electron flux decay. This quantitative analysis provides further support for the mechan. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023087 Available at:
More Details
Authors: Agapitov O. V., Mozer F. S., Artemyev A. V., Mourenas D., and Krasnoselskikh V. V.
Title: Wave-particle interactions in the outer radiation belts
Abstract: Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.
Date: 12/2015 Publisher: Advances in Astronomy and Space Physics Pages: 68-74 DOI: N/A Available at:
More Details
Authors: Moya Pablo. S., Pinto Víctor A., Viñas Adolfo F., Sibeck David G., Kurth William S., et al.
Title: Weak Kinetic Alfvén Waves Turbulence during the November 14th 2012 geomagnetic storm: Van Allen Probes observations
Abstract: n the dawn sector, L~ 5.5 and MLT~4-7, from 01:30 to 06:00 UT during the November 14th 2012 geomagnetic storm, both Van Allen Probes observed an alternating sequence of locally quiet and disturbed intervals with two strikingly different power fluctuation levels and magnetic field orientations: either small (~10−2 nT2) total power with strong GSM Bx and weak By, or large (~10 nT2) total power with weak Bx, and strong By and Bz components. During both kinds of intervals the fluctuations occur in the vicinity of the local ion gyro-frequencies (0.01-10 Hz) in the spacecraft frame, propagate oblique to the magnetic field, (θ ~ 60°) and have magnetic compressibility C = |δB|||/|δB⊥| ∼ 1, where δB|| (δB⊥) are the average amplitudes of the fluctuations parallel (perpendicular) to the. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020281 Available at:
More Details
Authors: Crabtree C., Rudakov L., Ganguli G., Mithaiwala M., Galinsky V., et al.
Title: Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering
Abstract: We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scatteredwave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple. . .
Date: 01/2012 Publisher: Physics of Plasmas Pages: 032903 DOI: 10.1063/1.3692092 Available at:
More Details
Authors: Boyd A.J., Turner D.L., Reeves G.D., Spence H.E., Baker D.N., et al.
Title: What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era
Abstract: We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) “local acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PSD. To differentiate between these processes, we examine radial profiles of PSD in adiabatic coordinates using data from the Van Allen Probes and THEMIS satellites for 80 outer belt enhancement events from October 2012‐April 2017 This study shows that local acceleration is the domin. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077699 Available at:
More Details
Authors: Forsyth C., Rae I. J., Murphy K. R., Freeman M. P., Huang C.-L., et al.
Title: What effect do substorms have on the content of the radiation belts?
Abstract: Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negat. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022620 Available at:
More Details
Authors: Archer M. O., and Plaschke F.
Title: What frequencies of standing surface waves can the subsolar magnetopause support?
Abstract: It is has been proposed that the subsolar magnetopause may support its own eigenmode, consisting of propagating surface waves which reflect at the northern/southern ionospheres forming a standing wave. While the eigenfrequencies of these so-called Kruskal-Schwartzschild (KS) modes have been estimated under typical conditions, the potential distribution of frequencies over the full range of solar wind conditions is not know. Using models of the magnetosphere and magnetosheath applied to an entire solar cycle's worth of solar wind data, we perform time-of-flight calculations yielding a database of KS mode frequencies. Under non-storm times or northward interplanetary magnetic field (IMF), the most likely fundamental frequency is calculated to be inline image mHz, consistent with previous est. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020545 Available at:
More Details
Authors: Baker Daniel N., and Lanzerotti Louis
Title: Where Are the "Killer Electrons" of the Declining Phase of Solar Cycle 23
Abstract: “Killer electrons,” enhanced fluxes of radiation belt electrons in the magnetosphere–especially those at geosynchronous orbit (GEO)–were an important space weather phenomenon during the decline to minimum of the last 11-year solar cycle (1993–1995). Indeed, the fluxes of these electrons were reported at the time to have significantly influenced the incidence of anomalies on numerous spacecraft, both commercial and national defense. The incidences of spacecraft anomalies and the “pumping up” of the GEO electron fluxes gave rise to the picture that solar minimum did not provide a benign environment for space-based technologies as had been assumed by many. The decline to minimum of this current (23th) solar cycle has as yet to produce the same number of reported spacecra. . .
Date: 07/2006 Publisher: Space Weather DOI: 10.1029/2006SW000259 Available at:
More Details
Authors: Fu Xiangrong, Cowee Misa M., Friedel Reinhard H., Funsten Herbert O, Gary Peter, et al.
Title: Whistler Anisotropy Instabilities as the Source of Banded Chorus: Van Allen Probes Observations and Particle-in-Cell Simulations
Abstract: Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell (PIC) simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from HOPE instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron mod. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020364 Available at:
More Details
Authors: Millan R M
Title: X-ray observations of MeV electron precipitation with a balloon-borne germanium spectrometer
Abstract: The high-resolution germanium detector aboard the MAXIS (MeV Auroral X-ray Imaging and Spectroscopy) balloon payload detected nine X-ray bursts with significant flux extending above 0.5 MeV during an 18 day flight over Antarctica. These minutes-to-hours-long events are characterized by an extremely flat spectrum (∼E−2) similar to the first MeV event discovered in 1996, indicating that the bulk of parent precipitating electrons is at relativistic energies. The MeV bursts were detected between magnetic latitudes 58°–68° (L-values of 3.8–6.7) but only in the late afternoon/dusk sectors (14:30–00:00 MLT), suggesting scattering by EMIC (electromagnetic ion cyclotron) waves as a precipitation mechanism. We estimate the average flux of precipitating E ≥ 0.5 MeV electrons to be ∼36. . .
Date: 12/2002 Publisher: Geophysical Research Letters DOI: 10.1029/2002GL015922 Available at:
More Details
Authors: Lejosne Solène, and Roederer Juan G.
Title: The “zebra stripes”: An effect of F-region zonal plasma drifts on the longitudinal distribution of radiation belt particles
Abstract: We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distributions into rigid corotation with the Earth. An equation based on a simple first-order model is set up to determine quantitatively the appearance of zebra stripes as a function of magnetic time. Our numerical predictions are in agreement with measurements by the Ra. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021925 Available at:
More Details
Authors: Li J., Bortnik J., Li W., Ma Q., Thorne R. M., et al.
Title: “Zipper-like” periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations
Abstract: An interesting form of “zipper-like” magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisat. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023536 Available at:
More Details
Authors: Brito Thiago V.
Title: Precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere
Abstract: There is a renewed interest in the study of the radiation belts with the recent launch of the Van Allen Probes satellites. The mechanisms that drive the global response of the radiation belts to geomagnetic storms are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in 2D and 3D test particle simulations. In this study simulations were performed to investigate energization and loss of energetic radiation belt electrons. The response of the radiation belts to a CM. . .
Date: DOI: N/A Available at:
More Details