Found 116 results
Filters: Author is Kletzing, C. A.  [Clear All Filters]
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at:
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at:
More Details
Authors: Li W, Thorne R M, Ma Q, Ni B, Bortnik J, et al.
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiati. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4681 - 4693 DOI: 10.1002/jgra.v119.610.1002/2014JA019945 Available at:
More Details
Authors: Jordanova V K, Yu Y., Niehof J T, Skoug R M, Reeves G D, et al.
Title: Simulations of inner magnetosphere dynamics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations
Abstract: Simulations from our newly expanded ring current-atmosphere interactions model with self-consistent magnetic field (RAM-SCB), now valid out to 9 RE, are compared for the first time with Van Allen Probes observations. The expanded model reproduces the storm time ring current buildup due to the increased convection and inflow of plasma from the magnetotail. It matches Magnetic Electron Ion Spectrometer (MagEIS) observations of the trapped high-energy (>50 keV) ion flux; however, it underestimates the low-energy (<10 keV) Helium, Oxygen, Proton, and Electron (HOPE) observations. The dispersed injections of ring current ions observed with the Energetic particle, Composition, and Thermal plasma (ECT) suite at high (>20 keV) energy are better reproduced using a high-resolution convection model. . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2687 - 2694 DOI: 10.1002/2014GL059533 Available at:
More Details
Authors: Santolik O, Hospodarsky G B, Kurth W S, Averkamp T. F., Kletzing C A, et al.
Title: Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions
Abstract: Wave-particle interactions in the Earth's Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth's magnetosphere in all MLT sectors, and a . . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929880 Available at:
More Details
Authors: Ma Q, Li W, Chen L, Thorne R M, Kletzing C A, et al.
Title: The trapping of equatorial magnetosonic waves in the Earth's outer plasmasphere
Abstract: We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth's plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localized spatial region near the plasmapause. The waves can subsequently propagate into the inner plasmasphere and remain trapped over a limited radial extent, consistent with the predictions of near-perpendicular propagation. By performing a similar analysis on another observed magnetosoni. . .
Date: 09/2014 Publisher: Geophysical Research Letters Pages: 6307 - 6313 DOI: 10.1002/2014GL061414 Available at:
More Details
Authors: Boardsen S. A., Hospodarsky G B, Kletzing C A, Pfaff R. F., Kurth W S, et al.
Title: Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode
Abstract: Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9–11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062020 Available at:
More Details
Authors: Fennell J. F., Roeder J. L., Kurth W S, Henderson M G, Larsen B A, et al.
Title: Van Allen Probes observations of direct wave-particle interactions
Abstract: Quasiperiodic increases, or “bursts,” of 17–26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75–80°, while fluxes at 90° and <60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ~15–35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signa. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1869 - 1875 DOI: 10.1002/2013GL059165 Available at:
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Green J C, et al.
Title: Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes
Abstract: We adopt a physics-based technique to infer chorus wave amplitudes from the low-altitude electron population (30–100 keV) measured by multiple Polar Orbiting Environmental Satellites (POES), which provide extensive coverage over a broad region in L-shell and magnetic local time (MLT). This technique is validated by analyzing conjunction events between the Van Allen Probes measuring chorus wave amplitudes near the equator and POES satellites measuring the 30–100 keV electron population at the conjugate low altitudes. We apply this technique to construct the chorus wave distributions during the 8–9 October storm in 2012 and demonstrate that the inferred chorus wave amplitudes agree reasonably well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The . . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4526 - 4532 DOI: 10.1002/grl.v40.1710.1002/grl.50920 Available at:
More Details
Authors: Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, et al.
Title: The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
Abstract: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation bel. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9993-6 Available at:
More Details
Authors: Reeves G D, Spence H E, Henderson M G, Morley S. K., Friedel R H W, et al.
Title: Electron Acceleration in the Heart of the Van Allen Radiation Belts
Abstract: The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth’s magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local acceleration). We report measurements from NASA’s Van Allen Radiation Belt Storm Probes that clearly distinguish between the two types of acceleration. The observed radial profiles of phase space density are characteristic of local acceleration in the heart of the radiation belt. . .
Date: 07/2013 Publisher: Science Pages: 991 - 994 DOI: 10.1126/science.1237743 Available at:
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm
Abstract: A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, whic. . .
Date: 06/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50627 Available at:
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, et al.
Title: A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt
Abstract: Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unc. . .
Date: 04/2013 Publisher: Science Pages: 186-190 DOI: 10.1126/science.1233518 Available at:
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
Abstract: Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous. . .
Date: 12/2013 Publisher: Nature Pages: 411 - 414 DOI: 10.1038/nature12889 Available at:
More Details
Authors: Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, et al.
Title: An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons
Abstract: Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100–2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed conve. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3798 - 3803 DOI: 10.1002/grl.50787 Available at:
More Details
Authors: Claudepierre S G, Mann I R, Takahashi K, Fennell J F, Hudson M K, et al.
Title: Van Allen Probes observation of localized drift-resonance between poloidal mode ultra-low frequency waves and 60 keV electrons
Abstract: [1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20–500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The azimuthal mode number of the interacting wave is estimated from the electron measurements to be ~40, based on an assumed symmetric drift resonance. The drift-resonant interaction is observed to be localized and occur over 5–6 wave cycles, demonstrating peak electron flux modul. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4491–4497 DOI: 10.1002/grl.50901 Available at:
More Details