Biblio

Found 879 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Authors: Battiston Roberto
Title: Cosmic ray physics in space: from fundamental physics to applications
Abstract: One hundred years after their discovery by Victor Hess, cosmic rays are nowadays subject of intense research from space-based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the alpha magnetic spectrometer (AMS-02) has been installed on the International Space Station, to measure with high accuracy the cosmic ray properties searching for rare events which could be an indication of the nature of dark matter or presence of nuclear antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, involving in particular Chinese and Italian scientists, to design and build a state of the art detector capable to perform high precision cosmic rays m. . .
Date: 03/2014 Publisher: Rendiconti Lincei Pages: 97 - 105 DOI: 10.1007/s12210-014-0293-1 Available at: http://link.springer.com/10.1007/s12210-014-0293-1http://link.springer.com/content/pdf/10.1007/s12210-014-0293-1
More Details
Authors: Nag Sreeja, LeMoigne Jacqueline, and de Weck Olivier
Title: Cost and risk analysis of small satellite constellations for earth observation
Abstract: Distributed Space Missions (DSMs) are gaining momentum in their application to Earth science missions owing to their ability to increase observation sampling in spatial, spectral, temporal and angular dimensions. Past literature from academia and industry have proposed and evaluated many cost models for spacecraft as well as methods for quantifying risk. However, there have been few comprehensive studies quantifying the cost for multiple spacecraft, for small satellites and the cost risk for the operations phase of the project which needs to be budgeted for when designing and building efficient architectures. This paper identifies the three critical problems with the applicability of current cost and risk models to distributed small satellite missions and uses data-based modeling to sugges. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836396 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836396
More Details
Authors: Goldstein J., Angelopoulos V., De Pascuale S., Funsten H. O., Kurth W. S., et al.
Title: Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS
Abstract: We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside sout. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023173 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023173
More Details
Authors: Goldstein J, Angelopoulos V, De Pascuale S., Funsten H O, Kurth W S, et al.
Title: Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS
Abstract: We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside sout. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 368 - 392 DOI: 10.1002/jgra.v122.110.1002/2016JA023173 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023173/full
More Details
Authors: Fennell J. F., Blake J B, Claudepierre S., Mazur J, Kanekal S., et al.
Title: Current energetic particle sensors
Abstract: Several energetic particle sensors designed to make measurements in the current decade are described and their technology and capabilities discussed and demonstrated. Most of these instruments are already on orbit or approaching launch. These include the Magnetic Electron Ion Spectrometers (MagEIS) and the Relativistic Electron Proton Telescope (REPT) that are flying on the Van Allen Probes, the Fly's Eye Electron Proton Spectrometers (FEEPS) flying on the Magnetospheric Multiscale (MMS) mission, and Dosimeters flying on the AC6 Cubesat mission. We focus mostly on the electron measurement capability of these sensors while providing summary comments of their ion measurement capabilities if they have any.
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022588 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022588/abstract
More Details
Authors: Omura Yoshiharu, Hsieh Yi‐Kai, Foster John C., Erickson Philip J., Kletzing Craig A., et al.
Title: Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler‐Mode Chorus Emissions
Abstract: Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler‐mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler‐mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026374 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026374
More Details
D
Authors: Cattell C., Breneman A., Colpitts C., Dombeck J., Thaller S., et al.
Title: Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13
Abstract: Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF. . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074895 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074895/full
More Details
Authors: Pinto V. A., Mourenas D., Bortnik J, Zhang X.‐J., Artemyev A. V., et al.
Title: Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss
Abstract: Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in‐between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 and that are located in the region 2.9Date: Dec-07-2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026509 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026509
More Details
Authors: Walsh B. M., Thomas E. G., Hwang K.-J., Baker J. B. H., Ruohoniemi J. M., et al.
Title: Dense plasma and Kelvin-Helmholtz waves at Earth's dayside magnetopause
Abstract: Spacecraft observations of boundary waves at the dayside terrestrial magnetopause and their ground-based signatures are presented. Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measured boundary waves at the magnetopause while ground-based HF radar measured corresponding signatures in the ionosphere indicating a large-scale response and tailward propagating waves. The properties of the oscillations are consistent with linear phase Kelvin-Helmholtz waves along the magnetopause boundary. During this time period multiple THEMIS spacecraft also measured a plasmaspheric plume contacting the local magnetopause and mass loading the boundary. Previous work has demonstrated that increasing the density at the magnetopause can lower the efficiency of reconnec. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021014 Available at: http://doi.wiley.com/10.1002/2015JA021014
More Details
Authors: Drozdov A. Y., Shprits Y Y, Aseev N. A., Kellerman A. C., and Reeves G D
Title: Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport
Abstract: Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, in. . .
Date: 01/2017 Publisher: Space Weather Pages: 150 - 162 DOI: 10.1002/swe.v15.110.1002/2016SW001426 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016SW001426/full
More Details
Authors: Kim Kyung-Chan, and Shprits Yuri
Title: Dependence of the amplitude of magnetosonic waves on the solar wind and AE index using Van Allen Probes
Abstract: We present the dependence of the magnetosonic wave amplitudes both outside and inside the plasmapause on the solar wind and AE index using Van Allen Probe-A spacecraft during the time period of 1 October 2012 to 31 December 2015, based on a correlation and regression analysis. Solar wind parameters considered are the southward interplanetary magnetic field (IMF BS), solar wind number density (NSW), and bulk speed (VSW). We find that the wave amplitudes outside (inside) the plasmapause are well correlated with the preceding AE, IMF BS, and NSW with time delays, each corresponding to 2–3 h (3–4 h), 4–5 h (3–4 h), and 2–3 h (8–9 h), while the correlation with VSW is ambiguous both inside and outside the plasmapause. As measured by the correlation coefficient, the IMF BS is the mos. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024094 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024094/full
More Details
Authors: Saikin A. A., Zhang J. -C., Smith C W, Spence H E, Torbert R B, et al.
Title: The dependence on geomagnetic conditions and solar wind dynamic pressure of the spatial distributions of EMIC waves observed by the Van Allen Probes
Abstract: A statistical examination on the spatial distributions of electromagnetic ion cyclotron (EMIC) waves observed by the Van Allen Probes against varying levels of geomagnetic activity (i.e., AE and SYM-H) and dynamic pressure has been performed. Measurements taken by the Electric and Magnetic Field Instrument Suite and Integrated Science for the first full magnetic local time (MLT) precession of the Van Allen Probes (September 2012–June 2014) are used to identify over 700 EMIC wave events. Spatial distributions of EMIC waves are found to vary depending on the level of geomagnetic activity and solar wind dynamic pressure. EMIC wave events were observed under quiet (AE ≤ 100 nT, 325 wave events), moderate (100 nT < AE ≤ 300 nT, 218 wave events), and disturbed (AE > 3. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022523 Available at: http://doi.wiley.com/10.1002/2016JA022523
More Details
Authors: Bushman Stewart
Title: Design, Fabrication, and Testing of the Radiation Belt Storm Probes Propulsion Systems
Abstract: The Radiation Belt Storm Probes spacecraft , part of NASA’s Living with a Star program, are scheduled for launch into Earth orbit in August 2012. 1,2,3 The twin spacecraft possess identical blowdown monopropellant hydrazine propulsion systems to provide spinup/spindown, precession, Delt a–V, and deorbit capability. Each spacecraft manifests eight Aerojet 0.2 lbf (0.9 N) MR–103G thrust ers, three ARDÉ Inconel 718 propellant tanks, and other components required to control the fl ow of propellant and monitor system health and performance. The propulsion systems were fabricated and installed by Aerojet Redmond and subsequently tested at the Jo hns Hopkins University / Applied Physics Laboratory (APL) in Laurel, MD. The test se quence at APL included thermal balance; . . .
Date: 08/2012 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/6.2012-4332 Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2012-4332
More Details
Authors: Liggett William, Handiboe Jon, Theus Eugene, Hartka Ted, and Navid Hadi
Title: Design of a spacecraft integration and test facility at The Johns Hopkins University Applied Physics Laboratory
Abstract: The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is dedicated to solving critical challenges as set forth by the National Aeronautics and Space Administration and the Department of Defense. JHU/APL participates fully in the nation's formulation of space science and exploration priorities, providing the needed science, engineering, and technology, including the production and operation of unique spacecraft, instruments, and subsystems.
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836273 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836273
More Details
Authors: He Fei, Zhang Xiao-Xin, Chen Bo, and Fok Mei-Ching
Title: Determination of the Earth's plasmapause location from the CE-3 EUVC images
Abstract: The Moon-based Extreme Ultraviolet Camera (EUVC) aboard China's Chang'e-3 (CE-3) mission has successfully imaged the entire Earth's plasmasphere for the first time from the side views on lunar surface. An EUVC image on 21 April 2014 is used in this study to demonstrate the characteristics and configurations of the Moon-based EUV imaging and to illustrate the determination algorithm of the plasmapause locations on the magnetic equator. The plasmapause locations determined from all the available EUVC images with the Minimum L Algorithm are quantitatively compared with those extracted from in situ observations (Defense Meteorological Satellite Program, Time History of Events and Macroscale Interactions during Substorms, and Radiation Belt Storm Probes). Excellent agreement between the determi. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021863 Available at: http://doi.wiley.com/10.1002/2015JA021863
More Details
Authors: Allison Hayley J., Horne Richard B, Glauert Sarah A, and Del Zanna Giulio
Title: Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit
Abstract: Variations in the high‐energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower‐energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low‐altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90°. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given . . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025786 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025786
More Details
Authors: Hartley D. P., Kletzing C A, De Pascuale S., Kurth W S, and ík O.
Title: Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss
Abstract: A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A statistical calibration is performed against the density from the upper hybrid line, accounting for both systematic offsets and distribution scatter in the hiss‐inferred densities. This calculation and calibration methodology provides accurate density estimates, both stati. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025658 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025658
More Details
Authors: Murphy Kyle R., Inglis Andrew R., Sibeck David G., Rae Jonathan, Watt Clare E. J., et al.
Title: Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm
Abstract: Ultra‐low frequency (ULF) waves play a fundamental role in the dynamics of the inner‐magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale (MMS) mission, we characterize the evolution of ULF waves during a high‐speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations (AFINO) code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the MMS sp. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024877 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA024877
More Details
Authors: Whittaker Ian C., Gamble Rory J., Rodger Craig J., Clilverd Mark A., and Sauvaud é
Title: Determining the spectra of radiation belt electron losses: Fitting DEMETER electron flux observations for typical and storm times
Abstract: The energy spectra of energetic electron precipitation from the radiation belts are studied in order to improve our understanding of the influence of radiation belt processes. The Detection of Electromagnetic Emissions Transmitted from Earthquake Regions (DEMETER) microsatellite electron flux instrument is comparatively unusual in that it has very high energy resolution (128 channels with 17.9 keV widths in normal survey mode), which lends itself to this type of spectral analysis. Here electron spectra from DEMETER have been analyzed from all six years of its operation, and three fit types (power law, exponential, and kappa-type) have been applied to the precipitating flux observations. We show that the power law fit consistently provides the best representation of the flux and that the ka. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7611 - 7623 DOI: 10.1002/2013JA019228 Available at: http://doi.wiley.com/10.1002/2013JA019228
More Details
Authors: Boardsen Scott A., Hospodarsky George B., Min Kyungguk, Averkamp Terrance F., Bounds Scott R., et al.
Title: Determining the wave vector direction of equatorial fast magnetosonic waves
Abstract: We perform polarization analysis of the equatorial fast magnetosonic waves electric field over a 20 minute interval of Van Allen Probes A Waveform Receiver burst mode data. The wave power peaks at harmonics of the proton cyclotron frequency indicating the spacecraft is near or in the source region. The wave vector is inferred from the direction of the major axis of the electric field polarization ellipsoid and the sign of the phase between the longitudinal electric and compressional magnetic field components. We show that wave vector is preferentially in the azimuthal direction as opposed to the radial direction. From Poynting flux analysis one would infer that the wave vector is primarily in the radial direction. We show that the error in the Poynting flux is large ~ 90°. These results s. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078695 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078695
More Details
Authors: Drake J. F., Agapitov O. V., and Mozer F S
Title: The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves
Abstract: The dynamics and structure of whistler turbulence relevant to electron acceleration in the Earth's outer radiation belt is explored with simulations and comparisons with observations. An initial state with an electron temperature anisotropy in a spatially localized domain drives whistlers which scatter electrons. An outward propagating front of whistlers and hot electrons nonlinearly evolves to form regions of intense parallel electric field with structure similar to observations. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063528 Available at: http://doi.wiley.com/10.1002/2015GL063528
More Details
Authors: Hartinger M. D., Claudepierre S G, Turner D. L., Reeves G D, Breneman A., et al.
Title: Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels
Abstract: Electron flux measurements are an important diagnostic for interactions between ultralow‐frequency (ULF) waves and relativistic (∼1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh‐resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission—obtained using a data product that improves the energy resolution by roughly an order of magnitude—are crucial for understanding ULF wave‐particle interactions. In particular, the ultrahigh‐resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard meas. . .
Date: 10/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080291
More Details
Authors: Chen Margaret W., Lemon Colby L., Hecht James, Sazykin Stanislav, Wolf Richard A., et al.
Title: Diffuse Auroral Electron and Ion Precipitation Effects on RCM‐E Comparisons with Satellite Data During the March 17, 2013 Storm
Abstract: Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self‐consistent Rice Convection Model Equilibrium (RCM‐E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnig. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026545 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026545
More Details
Authors: Schulz Michael, and Eviatar Aharon
Title: Diffusion of Equatorial Particles in the Outer Radiation Zone
Abstract: Expansions and contractions of the permanently compressed magnetosphere lead to the diffusion of equatorially trapped particles across drift shells. A general technique for obtaining the electric fields induced by these expansions and contractions is described and applied to the Mead geomagnetic field model. The resulting electric drifts are calculated and are superimposed upon the gradient drift executed by a particle that conserves its first (μ) and second (J = 0) adiabatic invariants. The noon-midnight asymmetry of the unperturbed drift trajectory (resulting from gradient drift alone) is approximated by means of a simple model. In this model the angular drift frequency is found to be the geometric mean of a particle's angular drift velocities at noon and midnight. The radial diffusion . . .
Date: 05/1969 Publisher: Journal of Geophysical Research Pages: 2182 - 2192 DOI: 10.1029/JA074i009p02182 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA074i009p02182/abstract
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Krasnoselskikh V. V., et al.
Title: Diffusive scattering of electrons by electron holes around injection fronts
Abstract: Van Allen Probes have detected nonlinear electrostatic spikes around injection fronts in the outer radiation belt. These spikes include electron holes (EH), double layers, and more complicated solitary waves. We show that EHs can efficiently scatter electrons due to their substantial transverse electric fields. Although the electron scattering driven by EHs is diffusive, it cannot be evaluated via the standard quasi-linear theory. We derive analytical formulas describing local electron scattering by a single EH and verify them via test particle simulations. We show that the most efficiently scattered are gyroresonant electrons (crossing EH on a time scale comparable to the local electron gyroperiod). We compute bounce-averaged diffusion coefficients and demonstrate their dependence on the . . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023337 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023337/full
More Details
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Diffusive transport of several hundred keV electrons in the Earth's slot region
Abstract: We investigate the gradual diffusion of energetic electrons from the inner edge of the outer radiation belt into the slot region. The Van Allen Probes observed slow inward diffusion and decay of ~200-600 keV electrons following the intense geomagnetic storm that occurred on 17 March 2013. During the 10-day non-disturbed period following the storm, the peak of electron fluxes gradually moved from L~2.7 to L~2.4, and the flux levels decreased by a factor of ~2-4 depending on the electron energy. We simulated the radial intrusion and decay of electrons using a 3-dimentional diffusion code, which reproduced the energy-dependent transport of electrons from ~100 keV to 1 MeV in the slot region. At energies of 100-200 keV, the electrons experience fast transport across the slot region due to the . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024452 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024452/full
More Details
Authors: Liu Jiang, Angelopoulos V, Zhang Xiao-Jia, Turner D. L., Gabrielse C., et al.
Title: Dipolarizing flux bundles in the cis-geosynchronous magnetosphere: relationship between electric fields and energetic particle injections
Abstract: Dipolarizing flux bundles (DFBs) are small flux tubes (typically < 3 RE in XGSM and YGSM) in the nightside magnetosphere that have magnetic field more dipolar than the background. Although DFBs are known to accelerate particles, creating energetic particle injections outside geosynchronous orbit (trans-GEO), the nature of the acceleration mechanism and the importance of DFBs in generating injections inside geosynchronous orbit (cis-GEO) are unclear. Our statistical study of cis-GEO DFBs using data from the Van Allen Probes reveals that just like trans-GEO DFBs, cis-GEO DFBs occur most often in the pre-midnight sector, but their occurrence rate is ~1/3 that of trans-GEO DFBs. Half the cis-GEO DFBs are accompanied by an energetic particle injection and have an electric field three times stro. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021691 Available at: http://doi.wiley.com/10.1002/2015JA021691
More Details
Authors: Holzworth R H, and Mozer F S
Title: Direct Evaluation of the Radial Diffusion Coefficient near L = 6 Due to Electric Field Fluctuations
Abstract: The radial diffusion coefficient for radiation belt particles near L=6 has been calculated from the measured electric field fluctuations. Simultaneous balloon flights in August 1974 from six auroral zone sites ranging 180° in magnetic longitude produced the electric field data. The large scale slowly varying ionospheric electric fields from these flights have been mapped to the equator during the quiet magnetic conditions of this campaign. These mapped equatorial electric fields were then Fourier transformed in space and time to produce power spectra of the first two terms of the global azimuthal electric field. From these power spectra the radial diffusion coefficient has been calculated.
Date: 06/1979 Publisher: Journal of Geophysical Research Pages: 2559 - 2566 DOI: 10.1029/JA084iA06p02559 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA084iA06p02559/abstract
More Details
Authors: Zhang X.-J., Li W, Ma Q, Thorne R M, Angelopoulos V, et al.
Title: Direct evidence for EMIC wave scattering of relativistic electrons in space
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause efficient losses of highly relativistic (>1 MeV) electrons via gyroresonant interactions. Simultaneous observations of EMIC waves and equatorial electron pitch angle distributions, which can be used to directly quantify the EMIC wave scattering effect, are still very limited, however. In the present study, we evaluate the effect of EMIC waves on pitch angle scattering of ultrarelativistic (>1 MeV) electrons during the main phase of a geomagnetic storm, when intense EMIC wave activity was observed in situ (in the plasma plume region with high plasma density) on both Van Allen Probes. EMIC waves captured by Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes and on the ground across the. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022521 Available at: http://doi.wiley.com/10.1002/2016JA022521
More Details
Authors: Su Zhenpeng, Wang Geng, Liu Nigang, Zheng Huinan, Wang Yuming, et al.
Title: Direct observation of generation and propagation of magnetosonic waves following substorm injection
Abstract: Magnetosonic whistler mode waves play an important role in the radiation belt electron dynamics. Previous theory has suggested that these waves are excited by the ring distributions of hot protons and can propagate radially and azimuthally over a broad spatial range. However, because of the challenging requirements on satellite locations and data-processing techniques, this theory was difficult to validate directly. Here we present some experimental tests of the theory on the basis of Van Allen Probes observations of magnetosonic waves following substorm injections. At higher L-shells with significant substorm injections, the discrete magnetosonic emission lines started approximately at the proton gyrofrequency harmonics, qualitatively consistent with the prediction of linear proton Bernst. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074362 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074362/full
More Details
Authors: Mozer F S, Agapitov O., Krasnoselskikh V., Lejosne S., Reeves G D, et al.
Title: Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers
Abstract: The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth’s outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electri. . .
Date: 07/2014 Publisher: Phys. Rev. Lett. Pages: 035001 DOI: 10.1103/PhysRevLett.113.035001 Available at: http://link.aps.org/doi/10.1103/PhysRevLett.113.035001
More Details
Authors: Mozer S., Agapitov O., Krasnoselskikh V., Lejosne S., Reeves D., et al.
Title: Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers
Abstract: The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth’s outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electri. . .
Date: 07/2014 Publisher: Physical Review Letters DOI: 10.1103/PhysRevLett.113.035001 Available at: http://link.aps.org/doi/10.1103/PhysRevLett.113.035001
More Details
Authors: Zhang Q. -H., Lockwood M., Foster J. C., Zhang S. -R., Zhang B. -C., et al.
Title: Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions
Abstract: Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume (SED) at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary (PCB) due to pulsed dayside magnetopause reconnection, as indicated by in-situ THEMIS observations. Convection led to the patches entering the polar cap and being transported antisunward, whilst being continuously monitored by the globally distributed arrays of GPS receivers and SuperDARN radars. Changes in convectio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021172 Available at: http://doi.wiley.com/10.1002/2015JA021172
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at: http://doi.wiley.com/10.1002/2015GL063906
More Details
Authors: Mann Ian R., Lee E. A., Claudepierre S G, Fennell J. F., Degeling A., et al.
Title: Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts
Abstract: Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents . . .
Date: 11/2013 Publisher: Nature Communications DOI: 10.1038/ncomms3795 Available at: http://www.nature.com/doifinder/10.1038/ncomms3795
More Details
Authors: Malaspina David M., Jaynes Allison N., é Cory, Bortnik Jacob, Thaller Scott A., et al.
Title: The distribution of plasmaspheric hiss wave power with respect to plasmapause location
Abstract: In this work, Van Allen Probes data are used to derive terrestrial plasmaspheric hiss wave power distributions organized by (1) distance away from the plasmapause and (2) plasmapause distance from Earth. This approach is in contrast to the traditional organization of hiss wave power by L parameter and geomagnetic activity. Plasmapause-sorting reveals previously unreported and highly repeatable features of the hiss wave power distribution, including a regular spatial distribution of hiss power with respect to the plasmapause, a standoff distance between peak hiss power and the plasmapause, and frequency-dependent spatial localization of hiss. Identification and quantification of these features can provide insight into hiss generation and propagation and will facilitate improved parameteriza. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7878 - 7886 DOI: 10.1002/2016GL069982 Available at: http://doi.wiley.com/10.1002/2016GL069982
More Details
Authors: Cohen Ian J., Mitchell Donald G., Kistler Lynn M., Mauk Barry H., Anderson Brian J., et al.
Title: Dominance of high energy (>150 keV) heavy ion intensities in Earth's middle to outer magnetosphere
Abstract: Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically oxygen and helium) dominate those of protons at energies math formula150-220 keV in the middle to outer (>7 RE) magnetosphere. Given that relative composition measurements can drift as sensors degrade in gain, quality cross-calibration agreement between EIS observation. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024351 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024351/full
More Details
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet
Abstract: We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of. . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071359 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071359/full
More Details
Authors: Chaston C. C., Bonnell J. W., Reeves G D, and Skoug R M
Title: Driving ionospheric outflows and magnetospheric O + energy density with Alfvén waves
Abstract: We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O+ ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O+ distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersive Alfvén waves over several minutes may drive order of magnitude increases in O+ ion pressure to make substantial contributions to. . .
Date: 05/2016 Publisher: Geophysical Research Letters Pages: 4825 - 4833 DOI: 10.1002/2016GL069008 Available at: http://doi.wiley.com/10.1002/2016GL069008
More Details
Authors: Li W, Shprits Y Y, and Thorne R M
Title: Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms
Abstract: [1] Relativistic electrons in the outer radiation belt are subjected to pitch angle and energy diffusion by chorus, electromagnetic ion cyclotron (EMIC), and hiss waves. Using quasi-linear diffusion coefficients for cyclotron resonance with field-aligned waves, we examine whether the resonant interactions with chorus waves produce a net acceleration or loss of relativistic electrons. We also examine the effect of pitch angle scattering by EMIC and hiss waves during the main and recovery phases of a storm. The numerical simulations show that wave-particle interactions with whistler mode chorus waves with realistic wave spectral properties result in a net acceleration of relativistic electrons, while EMIC waves, which provide very fast scattering near the edge of the loss cone, may be a domi. . .
Date: 10/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2007JA012368 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2007JA012368/full
More Details
Authors: West H I, Buck R M, and Davidson G T
Title: The Dynamics of Energetic Electrons in the Earth’s Outer Radiation Belt During 1968 as Observed by the Lawrence Livermore National Laboratory’s Spectrometer on Ogo 5
Abstract: An account is given of measurements of electrons made by the LLNL magnetic electron spectrometer (60–3000 keV in seven differential energy channels) on the Ogo 5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed to identify those features dominated by pitch angle and radial diffusion; in doing so all aspects of phase space covered by the data were studied, including pitch angle distributions and spectral features, as well as decay rates. The pitch angle distributions are reported elsewhere. The spectra observed in the weeks after a storm at L ∼3–4.5 show the evolution of a peak at ∼1.5 MeV and pronounced minima at ∼0.5 MeV. The observed pitch angle diffusion lifetimes are identified as being the shortest decays observed and are found t. . .
Date: 04/1981 Publisher: Journal of Geophysical Research Pages: 2111 - 2142 DOI: 10.1029/JA086iA04p02111 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA086iA04p02111/abstract
More Details
Authors: Ukhorskiy A Y, and Sitnov M I
Title: Dynamics of Radiation Belt Particles
Abstract: This paper reviews basic concepts of particle dynamics underlying theoretical aspect of radiation belt modeling and data analysis. We outline the theory of adiabatic invariants of quasiperiodic Hamiltonian systems and derive the invariants of particle motion trapped in the radiation belts. We discuss how the nonlinearity of resonant interaction of particles with small-amplitude plasma waves, ubiquitous across the inner magnetosphere, can make particle motion stochastic. Long-term evolution of a stochastic system can be described by the Fokker-Plank (diffusion) equation. We derive the kinetic equation of particle diffusion in the invariant space and discuss its limitations and associated challenges which need to be addressed in forthcoming radiation belt models and data analysis.
Date: 11/2013 Publisher: Space Science Reviews Pages: 545-578 DOI: 10.1007/s11214-012-9938-5 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9938-5
More Details
Authors: Schultz Colin
Title: Dynamics of the Earth's Radiation Belts and Inner Magnetosphere
Abstract: Trapped by Earth's magnetic field far above the planet's surface, the energetic particles that fill the radiation belts are a sign of the Sun's influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent research results and sets the stage for the work currently being done by NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). In this interview, Eos talks to Summers about magnetospheric research, whistler mode waves, solar storms, and the effects of the radiation belts on Earth.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 509 - 509 DOI: 10.1002/eost.v94.5210.1002/2013EO520007 Available at: http://doi.wiley.com/10.1002/eost.v94.52http://doi.wiley.com/10.1002/2013EO520007
More Details
Authors: Shprits Yuri Y, Horne Richard B, Kellerman Adam C., and Drozdov Alexander Y.
Title: The dynamics of Van Allen belts revisited
Abstract: N/A
Date: 02/2019 Publisher: Nature Physics Pages: 102 - 103 DOI: 10.1038/nphys4350 Available at: https://www.nature.com/articles/nphys4350
More Details
E
Authors: Maurer Richard, Goldsten J O, Peplowski P N, Holmes-Siedle A G, Butler Michael, et al.
Title: Early Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission
Abstract: The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth's Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.
Date: 11/2013 Publisher: IEEE DOI: 10.1109/TNS.2013.2281937 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6651707
More Details
Authors: Maurer Richard, Goldsten John, Peplowski Patrick, Holmes-Siedle Andrew, Butler Michael, et al.
Title: Early Results From the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission
Abstract: The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth's Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.
Date: Jan-12-2013 Publisher: IEEE Transactions on Nuclear Science Pages: 4053 - 4058 DOI: 10.1109/TNS.2013.2281937 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6651707
More Details
Authors: Yetemen Omer, Istanbulluoglu Erkan, Flores-Cervantes Homero, Vivoni Enrique R., and Bras Rafael L.
Title: Ecohydrologic role of solar radiation on landscape evolution
Abstract: Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the rol. . .
Date: 02/2015 Publisher: Water Resources Research Pages: 1127 - 1157 DOI: 10.1002/wrcr.v51.210.1002/2014WR016169 Available at: http://doi.wiley.com/10.1002/2014WR016169
More Details
Authors: Usanova M. E., Drozdov A., Orlova K., Mann I. R., Shprits Y., et al.
Title: Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations
Abstract: We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both obse. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1375 - 1381 DOI: 10.1002/2013GL059024 Available at: http://doi.wiley.com/10.1002/2013GL059024
More Details
Authors: Moya Pablo. S., Pinto íctor A., Sibeck David G., Kanekal Shrikanth G, and Baker Daniel N
Title: On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations
Abstract: Using Van Allen Probes ECT-REPT observations we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion and no change in flux values depends strongly on L and energy. Enhancement events are more common for ∼ 2 MeV electrons at L ∼ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation be. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024735 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024735/full
More Details
Authors: Liu Bin, Li Liuyuan, Yu Jiang, and Cao Jinbin
Title: The Effect of Hot Protons on Magnetosonic Waves Inside and Outside the Plasmapause: New Observations and Theoretic Results
Abstract: Based on the wave and proton observations by Van Allen Probes A and B, we examined the effects of hot protons (0.01–50 keV) on fast magnetosonic (MS) waves inside and outside the Earth's plasmasphere. In the low-density plasma trough outside the plasmapause, the gyroresonance interactions between hot protons and MS waves not only cause the MS wave growth at some frequencies but also lead to the damping of MS waves at other frequencies, which depends on the proton phase space density gradient and the ambient plasma density. The gyroresonance of the observed hot protons cannot excite MS waves near the lower hybrid resonance frequency and even causes the MS wave damping. Thus, the frequencies of the observed MS waves outside the plasmapause are usually lower than the lower hybrid resonance . . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024676 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024676/full
More Details

Pages