Biblio

Found 178 results
Filters: First Letter Of Keyword is I  [Clear All Filters]
2015
Authors: Fennell J. F., Claudepierre S G, Blake J B, O'Brien T P, Clemmons J. H., et al.
Title: Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data
Abstract: We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the ECT/MagEIS sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons >900 keV were observed with equatorial fluxes above background (i.e. >0.1 electrons/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes <200 keV exceeded the AE9 model 50% fluxes and were lower than the higher energy model fluxes. Phase space density radial profiles for 1.3≤L*<2.5 had mostly positive gradients except near L*~2.1 where the profiles for μ = 20-30 MeV/G were flat or slightly peaked. The major result is that MagEIS data. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062874 Available at: http://doi.wiley.com/10.1002/2014GL062874
More Details
Authors: Fennell J. F., Claudepierre S G, Blake J B, O'Brien T P, Clemmons J. H., et al.
Title: Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data
Abstract: We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the ECT/MagEIS sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons >900 keV were observed with equatorial fluxes above background (i.e. >0.1 electrons/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes <200 keV exceeded the AE9 model 50% fluxes and were lower than the higher energy model fluxes. Phase space density radial profiles for 1.3≤L*<2.5 had mostly positive gradients except near L*~2.1 where the profiles for μ = 20-30 MeV/G were flat or slightly peaked. The major result is that MagEIS data. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062874 Available at: http://doi.wiley.com/10.1002/2014GL062874
More Details
Authors: Fennell J. F., Claudepierre S G, Blake J B, O'Brien T P, Clemmons J. H., et al.
Title: Van Allen Probes show the inner radiation zone contains no MeV electrons: ECT/MagEIS data
Abstract: We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the ECT/MagEIS sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons >900 keV were observed with equatorial fluxes above background (i.e. >0.1 electrons/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes <200 keV exceeded the AE9 model 50% fluxes and were lower than the higher energy model fluxes. Phase space density radial profiles for 1.3≤L*<2.5 had mostly positive gradients except near L*~2.1 where the profiles for μ = 20-30 MeV/G were flat or slightly peaked. The major result is that MagEIS data. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062874 Available at: http://doi.wiley.com/10.1002/2014GL062874
More Details
2014
Authors: Turner D. L., Angelopoulos V, Morley S. K., Henderson M G, Reeves G D, et al.
Title: On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event
Abstract: On 30 September 2012, a flux “dropout” occurred throughout Earth's outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA's Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent . . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1530 - 1540 DOI: 10.1002/2013JA019446 Available at: http://doi.wiley.com/10.1002/2013JA019446
More Details
Authors: Zhao H., Li X, Blake J B, Fennell J. F., Claudepierre S G, et al.
Title: Characteristics of pitch angle distributions of 100 s keV electrons in the slot region and inner radiation belt
Abstract: The pitch angle distribution (PAD) of energetic electrons in the slot region and inner radiation belt received little attention in the past decades due to the lack of quality measurements. Using the state-of-art pitch-angle-resolved data from the Magnetic Electron Ion Spectrometer (MagEIS) instrument onboard the Van Allen Probes, a detailed analysis of 100 s keV electron PADs below L = 4 is performed, in which the PADs is categorized into three types: normal (flux peaking at 90∘), cap (exceedingly peaking narrowly around 90∘) and 90∘-minimum (lower flux at 90∘) PADs. By examining the characteristics of the PADs of ~460 keV electrons for over a year, we find that the 90∘-minimum PADs are generally present in the inner belt (L < 2), while normal PADs dominate at .L ~3.5. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020386 Available at: http://doi.wiley.com/10.1002/2014JA020386
More Details
Authors: Mauk B H
Title: Comparative Investigation of the Energetic Ion Spectra Comprising the Magnetospheric Ring Currents of the Solar System
Abstract: Investigated here are factors that control the intensities and shapes of energetic ion spectra that make up the ring current populations of the strongly magnetized planets of the solar system, specifically those of Earth, Jupiter, Saturn, Uranus, and Neptune. Following a previous and similar comparative investigation of radiation belt electrons, we here turn our attention to ions. Specifically, we examine the possible role of the differential ion Kennel-Petschek limit, as moderated by Electromagnetic Ion Cyclotron (EMIC) waves, as a standard for comparing the most intense ion spectra within the strongly magnetized planetary magnetospheres. In carrying out this investigation, the substantial complexities engendered by the very different ion composition distributions of these diverse magneto. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020392 Available at: http://doi.wiley.com/10.1002/2014JA020392
More Details
Authors: Fok M.-C., Buzulukova N. Y., Chen S.-H., Glocer A., Nagai T., et al.
Title: The Comprehensive Inner Magnetosphere-Ionosphere Model
Abstract: Simulation studies of the Earth's radiation belts and ring current are very useful in understanding the acceleration, transport, and loss of energetic particles. Recently, the Comprehensive Ring Current Model (CRCM) and the Radiation Belt Environment (RBE) model were merged to form a Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. CIMI solves for many essential quantities in the inner magnetosphere, including ion and electron distributions in the ring current and radiation belts, plasmaspheric density, Region 2 currents, convection potential, and precipitation in the ionosphere. It incorporates whistler mode chorus and hiss wave diffusion of energetic electrons in energy, pitch angle, and cross terms. CIMI thus represents a comprehensive model that considers the effects of the r. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7522 - 7540 DOI: 10.1002/jgra.v119.910.1002/2014JA020239 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020239
More Details
Authors: Thomas Evan G., Yan Jingye, Zhang Jiaojiao, Baker Joseph B. H., Ruohoniemi Michael, et al.
Title: An examination of the source of decameter-scale irregularities in the geomagnetically disturbed mid-latitude ionosphere
Abstract: We present first results from a study of the plasma instability mechanism responsible for the small-scale (∼10 m) ionospheric density irregularities commonly observed by the Super Dual Auroral Radar Network (SuperDARN) HF radars in the vicinity of Sub Auroral Polarization Streams (SAPS) during periods of geomagnetic disturbance. A focus is placed on the mid-latitude region of the ionosphere over North America where recent expansion of the SuperDARN network allows for extensive direct comparisons with total electron content (TEC) measurements from a dense network of ground-based GPS receivers. The TEC observations indicate that high-speed SAPS channels and the associated small-scale irregularities are typically located within the mid-latitude ionospheric trough. The Millstone Hill Incoher. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929853 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929853
More Details
Authors: Gerrard Andrew, Lanzerotti Louis, Gkioulidou Matina, Mitchell Donald, Manweiler Jerry, et al.
Title: Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument
Abstract: H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3–4, and decay more slowly with higher L-she. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020374 Available at: http://doi.wiley.com/10.1002/2014JA020374
More Details
Authors: Gerrard Andrew, Lanzerotti Louis, Gkioulidou Matina, Mitchell Donald, Manweiler Jerry, et al.
Title: Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument
Abstract: H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3–4, and decay more slowly with higher L-she. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020374 Available at: http://doi.wiley.com/10.1002/2014JA020374
More Details
Authors: Foster John C, and Erickson Philip J.
Title: Initial observations of plasma waves in the sub-auroral polarization stream with the Van Allen Probes
Abstract: The Sub-Auroral Polarization Stream (SAPS) is a geospace boundary layer phenomenon associated with the interaction of the warm plasma of the magnetospheric ring current with the cold ions and electrons of the outer plasmasphere [1]. Driven by ring current enhancements during magnetospheric disturbances, SAPS location, intensity, and characteristics are greatly influenced by the underlying ionosphere. Strong M-I coupling by means of field-aligned currents creates a high-speed (>1000 m/s) westward plasma flow channel in the ionosphere at pre-midnight/post-noon local times which is readily observable by incoherent scatter [2] and HF radars and in plasma drift observations by low-altitude spacecraft (e.g. DMSP). The fast ionospheric flows generate E-region irregularities providing for addition. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929852 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929852
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Kasahara Y., and Krasnoselskikh V.
Title: Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves
Abstract: Global statistics of the amplitude distributions of hiss, lightning-generated, and other whistler mode waves from terrestrial VLF transmitters have been obtained from the EXOS-D (Akebono) satellite in the Earth's plasmasphere and fitted as functions of L and latitude for two geomagnetic activity ranges (Kp<3 and Kp>3). In particular, the present study focuses on the inner zone L∈[1.4,2] where reliable in situ measurements were lacking. Such statistics are critically needed for an accurate assessment of the role and relative dominance of each type of wave in the dynamics of the inner radiation belt. While VLF waves seem to propagate mainly in a ducted mode at L∼1.5–3 for Kp<3, they appear to be substantially unducted during more disturbed periods (Kp>3). Hiss waves are generally the m. . .
Date: 04/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 2876 - 2893 DOI: 10.1002/jgra.v119.410.1002/2014JA019886 Available at: http://doi.wiley.com/10.1002/jgra.v119.4http://doi.wiley.com/10.1002/2014JA019886
More Details
Authors: Hao Y. X., Zong Q.-G., Wang Y. F., Zhou X.-Z., Zhang Hui, et al.
Title: Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail
Abstract: We present in situ observations of a shock-induced substorm-like event on 13 April 2013 observed by the newly launched Van Allen twin probes. Substorm-like electron injections with energy of 30–500 keV were observed in the region from L∼5.2 to 5.5 immediately after the shock arrival (followed by energetic electron drift echoes). Meanwhile, the electron flux was clearly and strongly varying on the ULF wave time scale. It is found that both toroidal and poloidal mode ULF waves with a period of 150 s emerged following the magnetotail magnetic field reconfiguration after the interplanetary (IP) shock passage. The poloidal mode is more intense than the toroidal mode. The 90° phase shift between the poloidal mode Br and Ea suggests the standing poloidal waves in the Northern Hemisphere. F. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020023 Available at: http://doi.wiley.com/10.1002/2014JA020023
More Details
Authors: Rodriguez Juan V., Onsager Terrance G., Heynderickx Daniel, and Jiggens Piers T. A.
Title: Meeting Report: Solar Energetic Particle Measurements Intercalibration Workshop, 11 April 2014, Boulder, Colorado
Abstract: Following the conclusion of the 2014 Space Weather Week in Boulder, Colorado, the NOAA National Geophysical Data Center and Space Weather Prediction Center cohosted a 1 day workshop on the intercalibration of solar energetic particle (SEP) measurements. The overall purpose of this workshop was to discuss the intercalibration of SEP measurements from different instruments and different spacecraft, to foster new cooperative intercalibration efforts, and to identify a path forward for establishing a set of intercalibration guidelines. The detailed objectives of this workshop were described by Rodriguez and Onsager [2014]. Ten talks were given at the workshop (available at ftp://ftp.ngdc.noaa.gov/STP/publications/spe_intercal/), interspersed with extensive discussions. One outcome of these . . .
Date: 11/2014 Publisher: Space Weather Pages: 613 - 615 DOI: 10.1002/swe.v12.1110.1002/2014SW001134 Available at: http://doi.wiley.com/10.1002/swe.v12.11
More Details
Authors: Bergeot Nicolas, Chevalier Jean-Marie, Bruyninx Carine, Pottiaux Eric, Aerts Wim, et al.
Title: Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data
Abstract: Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth’s atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability estimated in near real-time every 15 min on 0.5° × 0.5° grids using GPS observations. The maps are available online with a latency of ~3 min in IONEX format at ftp://gnss.oma.be and as interactive web pages at www.gnss.be. This paper presents the method used in the ROB-IONO softwa. . .
Date: 09/2014 Publisher: Journal of Space Weather and Space Climate Pages: A31 DOI: 10.1051/swsc/2014028 Available at: http://www.swsc-journal.org/10.1051/swsc/2014028
More Details
Authors: Lee Justin H., and Angelopoulos Vassilis
Title: Observations and modeling of EMIC wave properties in the presence of multiple ion species as function of magnetic local time
Abstract: Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to . . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020469 Available at: http://doi.wiley.com/10.1002/2014JA020469
More Details
Authors: Lee Justin H., and Angelopoulos Vassilis
Title: Observations and modeling of EMIC wave properties in the presence of multiple ion species as function of magnetic local time
Abstract: Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to . . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020469 Available at: http://doi.wiley.com/10.1002/2014JA020469
More Details
Authors: Palo Scott E., Gerhardt David, Li Xinlin, Blum Lauren, Schiller Quintin, et al.
Title: One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)
Abstract: The Colorado Student Space Weather Experiment is a 3-unit (10cm × 10cm × 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 × 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928087 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928087
More Details
Authors: Kletzing Craig A.
Title: Progress on understanding chorus emissions from data of the electric and magnetic field instrument suite and integrated science (EMFISIS) on the Van Allen Probes
Abstract: The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A key wave-particle interaction important to both acceleration and loss in the radiation belts is the of whistler-mode chorus interacting with energetic electrons. To measure this important radiation belt interaction, the two-satellite Van Allen Probes mission utilizes one of the most complete sets of measurements ever made in the inner magnetosphere. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnet. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929872 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929872
More Details
Authors: Gkioulidou Matina, Ukhorskiy A., Mitchell D G, Sotirelis T., Mauk B., et al.
Title: The role of small-scale ion injections in the buildup of Earth's ring current pressure: Van Allen Probes observations of the March 17 th , 2013 storm
Abstract: Energetic particle transport into the inner magnetosphere during geomagnetic storms is responsible for significant plasma pressure enhancement, which is the driver of large-scale currents that control the global electrodynamics within the magnetosphere-ionosphere system. Therefore, understanding the transport of plasma from the tail deep into the near-Earth magnetosphere, as well as the energization processes associated with this transport, is essential for a comprehensive knowledge of the near-Earth space environment. During the main phase of a geomagnetic storm on March 17th 2013 (minimum Dst ~ −137 nT), the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on the Van Allen Probes observed frequent, small-scale proton injections deep into the inner nightsi. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020096 Available at: http://doi.wiley.com/10.1002/2014JA020096
More Details
Authors: Firpi Alexer H., Oxenrider Jason R., Ramachandran Vignesh R., Mitchell Herbert J., Tzeng Nigel H., et al.
Title: Signature modeling for LWIR spectrometer
Abstract: Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantly determining the temperature of the material. Accounting for these environmental conditions allows for the data to be processed in emissivity to be used in the detection algorithm. The processed data also allows a baseline to determine where key features exist in the s. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836439 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836439
More Details
Authors: Firpi Alexer H., Oxenrider Jason R., Ramachandran Vignesh R., Mitchell Herbert J., Tzeng Nigel H., et al.
Title: Signature modeling for LWIR spectrometer
Abstract: Hyperspectral longwave infrared (LWIR) is used for a variety of targets such as gases and solids with the advantage of day or night data collections. A longwave infrared system must have the ability to convert the radiance data it measures to emissivity prior to running a detection algorithm, commonly called a temperature-emissivity separation (TES) algorithm. Key parts of this TES algorithm are accounting for the reflected down-welling radiation from the atmosphere, upwelling background radiance removal, and most importantly determining the temperature of the material. Accounting for these environmental conditions allows for the data to be processed in emissivity to be used in the detection algorithm. The processed data also allows a baseline to determine where key features exist in the s. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836439 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836439
More Details
Authors: Sergeev V. A., Nikolaev A. V., Tsyganenko N A, Angelopoulos V, Runov A. V., et al.
Title: Testing a two-loop pattern of the substorm current wedge (SCW2L)
Abstract: Recent quantitative testing of the classical (region 1 sense) substorm current wedge (SCI) model revealed systematic discrepancies between the observed and predicted amplitudes, which suggested us to include additional region 2 sense currents (R2 loop) earthward of the dipolarized region (SCW2L model). Here we discuss alternative circuit geometries of the 3-D substorm current system and interpret observations of the magnetic field dipolarizations made between 6.6RE and 11RE, to quantitatively investigate the SCW2L model parameters. During two cases of a dipole-like magnetotail configuration, the dipolarization/injection front fortuitously stopped at r ~ 9RE for the entire duration of ~ 30 min long SCW-related dipolarization within a unique, radially distributed multispacecraft constellat. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 947 - 963 DOI: 10.1002/2013JA019629 Available at: http://doi.wiley.com/10.1002/2013JA019629
More Details
Authors: Califf S., Li X, Blum L., Jaynes A., Schiller Q., et al.
Title: THEMIS measurements of quasi-static electric fields in the inner magnetosphere
Abstract: We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of stro. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020360 Available at: http://doi.wiley.com/10.1002/2014JA020360
More Details
Authors: Yang Xiao C., Zhu Guang W., Zhang Xiao X., Sun Yue Q., Liang Jin B., et al.
Title: An unusual long-lived relativistic electron enhancement event excited by sequential CMEs
Abstract: An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 × 102 cm-2·sr-1·s-1 to 3.5 × 104 cm-2·sr-1·s-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak re. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019797 Available at: http://doi.wiley.com/10.1002/2014JA019797
More Details
Authors: Boardsen S. A., Hospodarsky G B, Kletzing C A, Pfaff R. F., Kurth W S, et al.
Title: Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode
Abstract: Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9–11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062020 Available at: http://doi.wiley.com/10.1002/2014GL062020
More Details
2013
Authors: de Soria-Santacruz M., Orlova K. G., Martinez-Sanchez M., and Shprits Y Y
Title: Scattering rates of inner belt protons by EMIC waves: A comparison between test particle and diffusion simulations
Abstract: Inner belt energetic protons are a hindrance to development of space technologies. The emission of electromagnetic ion cyclotron (EMIC) waves from spaceborne transmitters has been proposed as a way to solve this problem. The interaction between particles and narrowband emissions has been typically studied using nonlinear test particle simulations. We show that this formulation results in a random walk of the inner belt protons in velocity space. In this paper we compute bounce-averaged pitch angle diffusion rates from test particle simulations and compare them to those of quasi-linear theory for quasi-monochromatic EMIC waves interacting with inner belt protons. We find that the quasi-linear solution is not sensitive to the frequency bandwidth for narrow distributions. Bounce-averaged diff. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4793–4797 DOI: 10.1002/grl.50925 Available at: http://doi.wiley.com/10.1002/grl.50925
More Details
2011
Authors: Millan R.M.
Title: Understanding relativistic electron losses with BARREL
Abstract: The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth's atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(∼20kg) balloon payloads will be launched, providing multi-point measurements of electron precipitation in conjunction with in situ measurements from the two RBSP spacecraft, scheduled to launch in May 2012. In this paper we outline the scientific objectives of BARREL, highlighting a few key science questions that will be addressed by BARREL in c. . .
Date: 07/2011 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 1425 - 1434 DOI: 10.1016/j.jastp.2011.01.006 Available at: http://www.sciencedirect.com/science/article/pii/S1364682611000071
More Details

Pages