Biblio

Found 3634 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
chorus inversion
Authors: Juhász Lilla, Omura Yoshiharu, Lichtenberger János, and Friedel Reinhard H.
Title: Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region
Abstract: In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground‐based data in order to derive the lower‐energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026337 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026337
More Details
chorus makes microbursts
Authors: Mozer F S, Agapitov O. V., Blake J B, and Vasko I. Y.
Title: SIMULTANEOUS OBSERVATIONS OF LOWER BAND CHORUS EMISSIONS AT THE EQUATOR AND MICROBURST PRECIPITATING ELECTRONS IN THE IONOSPHERE
Abstract: On December 11, 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 second burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One-second averaged variations of the chorus intensity and the microburst electron flux were well-correlated. The low altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, one second averaged, low altitude electron flux. However the large amplitude, <0.5 second duration, low altitude electron pulse. . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076120 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076120/full
More Details
chorus modulation
Authors: Xia Zhiyang, Chen Lunjin, Dai Lei, Claudepierre Seth G., Chan Anthony A, et al.
Title: Modulation of chorus intensity by ULF waves deep in the inner magnetosphere
Abstract: Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <∼ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, w. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070280 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016GL070280/full
More Details
chorus spatial scales
Authors: Agapitov O., Blum L. W., Mozer F S, Bonnell J. W., and Wygant J
Title: Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s−1) aboard the two Van Allen Probes spacecraft—9 h (0800–1200 UT and 1700–2200 UT) during two consecutive apogees on 15 July . . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL072701 Available at: http://doi.wiley.com/10.1002/2017GL072701
More Details
Chorus wave
Authors: Li Jinxing, Bortnik Jacob, An Xin, Li Wen, Thorne Richard M, et al.
Title: Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Abstract: Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir wave. . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,713 - 11,721 DOI: 10.1002/2017GL075877 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075877/full
More Details
Authors: Li W, Santolik O, Bortnik J, Thorne R M, Kletzing C A, et al.
Title: New Chorus Wave Properties Near the Equator from Van Allen Probes Wave Observations
Abstract: The chorus wave properties are evaluated using Van Allen Probes data in the Earth's equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-electrostatic mode is considerably weaker than the quasi-parallel mode, their electric intensities are comparable. A newly identified feature of the quasi-electrostatic mode is that its frequency peaks at higher values compared to the quasi-parallel mode that exhibits a broad frequency s. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068780 Available at: http://doi.wiley.com/10.1002/2016GL068780
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Xiao Fuliang, Summers Danny, Liu Nigang, et al.
Title: Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere
Abstract: Electromagnetic whistler‐mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave‐particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum‐frequency and difference‐frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly‐generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH w. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080635 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080635
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O. V., Krasnoselskikh V., and Mozer F.S.
Title: Very Oblique Whistler Generation By Low Energy Electron Streams
Abstract: Whistler-mode chorus waves are present throughout the Earth's outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution poss. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021135 Available at: http://doi.wiley.com/10.1002/2015JA021135
More Details
Authors: Li W, Thorne R M, Bortnik J, Baker D N, Reeves G D, et al.
Title: Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis
Abstract: Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and . . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065342 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL065342/abstract
More Details
Authors: Xiong Ying, Xie Lun, Chen Lunjin, Ni Binbin, Fu Suiyan, et al.
Title: The Response of the Energy Content of the Outer Electron Radiation Belt to Geomagnetic Storms
Abstract: Using the data from the Van Allen Probe‐A spacecraft, the variability of the total outer radiation belt (2.5300 keV) is investigated for the first time during 51 isolated storms spanning from October 2012 to May 2017. The statistical results show that the TRBEEC exhibits no‐change in 20% of the storms and gets enhanced during 80% of them. The sub‐relativistic electrons (300‐500 keV) and relativistic electrons (0.5‐2.0 MeV) equally contribute to the TRBEEC during the main phases, while in the recovery phases, the relativistic electrons contribute up to 80% of the TRBEEC. The results of the superposed epoch analysis of the solar wind parameters and geomagnetic indices indicate that the TRBEEC enhancement events prefe. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025475 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025475
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083118
More Details
chorus wave excitation
Authors: He Yihua, Xiao Fuliang, Zhou Qinghua, Yang Chang, Liu Si, et al.
Title: Van Allen Probes observation and modeling of chorus excitation and propagation during weak geomagnetic activities
Abstract: We report correlated data on nightside chorus waves and energetic electrons during two small storm periods: 1 November 2012 (Dst≈-45) and 14 January 2013 (Dst≈-18). The Van Allen Probes simultaneously observed strong chorus waves at locations L = 5.8 − 6.3, with a lower frequency band 0.1 − 0.5fce and a peak spectral density ∼[10−4 nT2/Hz. In the same period, the fluxes and anisotropy of energetic (∼ 10-300 keV) electrons were greatly enhanced in the interval of large negative interplanetary magnetic field Bz. Using a bi-Maxwellian distribution to model the observed electron distribution, we perform ray tracing simulations to show that nightside chorus waves are indeed produced by the observed electron distribution with a peak growth for a field-aligned propagation around bet. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021376 Available at: http://doi.wiley.com/10.1002/2015JA021376
More Details
chorus waves
Authors: Hartley D. P., Kletzing C A, Chen L, Horne R B, and ík O.
Title: Van Allen Probes observations of chorus wave vector orientations: Implications for the chorus-to-hiss mechanism
Abstract: Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In these cases, up to 94% of chorus wave power exists with the conditions required to access the plasmasphere. As such, we conclude that strong azimuthal density gradients are actually a requirement if a significant fraction of chorus wave power is to enter the plasmasphere an. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082111
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Krasnoselskikh V. V.
Title: Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes
Abstract: In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narr. . .
Date: 06/2015 Publisher: Physics of Plasmas Pages: 062901 DOI: 10.1063/1.4922061 Available at: http://scitation.aip.org/content/aip/journal/pop/22/6/10.1063/1.4922061
More Details
Authors: Spasojevic M.
Title: Statistical analysis of ground-based chorus observations during geomagnetic storms
Abstract: Chorus observations from two ground-based, Antarctic receiving stations are analyzed for a set of geomagnetic storms from 2000 to 2010. Superposed epoch analysis is performed together with statistical hypothesis testing to determine whether the observed quantities (geomagnetic indices, outer belt energetic electron fluxes, and chorus properties) are statistically significantly different as functions of storm phase, storm size, and storm type. Waves generated in the outer dayside magnetosphere and observed on the ground at South Pole Station are suppressed during main phase and are statistically unchanged from random intervals during recovery phase. Waves generated in the inner magnetosphere and observed on the ground at Palmer Station are significantly enhanced during storm main phase and . . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 8299 - 8317 DOI: 10.1002/jgra.v119.1010.1002/2014JA019975 Available at: http://doi.wiley.com/10.1002/jgra.v119.10http://doi.wiley.com/10.1002/2014JA019975
More Details
Authors: Wang X., Malaspina D. M., Ergun R. E., and M. Horányi.
Title: Photoelectron-mediated spacecraft potential fluctuations
Abstract: Electric field fluctuations such as those due to plasma waves in Earth's magnetosphere may modulate photoelectrons emitted from spacecraft surface, causing fluctuations in spacecraft potential. We experimentally investigate such photoelectron-mediated spacecraft potential fluctuations. The photoelectric charge of a spacecraft model is found to increase with increasing applied electric field as more photoelectrons escape the spacecraft model surface and dissipates with a decrease in the electric field through collection of ambient plasma electrons. When the applied electric field is driven to oscillate at a frequency lower than the response frequency of the spacecraft model, the surface potential follows the electric field oscillations. The spacecraft model maintains an approximately consta. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1094 - 1101 DOI: 10.1002/2013JA019502 Available at: http://doi.wiley.com/10.1002/2013JA019502
More Details
Authors: Teng S., Tao X., and Li W
Title: Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations
Abstract: Properties of banded, no‐gap, lower band only, and upper band only whistler mode waves (0.1–0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no‐gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no‐gap whistler waves peaks at magnetic latitude |MLAT|∼8–10°, while banded waves have higher occurrence rate near the equator for urn:x-wiley:grl:media:grl58818:grl58818-math-0001°. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no‐gap and banded whistler mode waves. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3607 - 3614 DOI: 10.1029/2019GL082161 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082161
More Details
Authors: Wang X., Malaspina D. M., Hsu H.-W., Ergun R. E., and M. Horányi.
Title: The effects of magnetic fields on photoelectron-mediated spacecraft potential fluctuations
Abstract: Previously, we have experimentally studied photoelectron-mediated spacecraft potential fluctuations associated with time-dependent external electric fields. In this paper, we investigate the effects of magnetic fields on such spacecraft potential fluctuations. A magnetic field is created above the UV-illuminated surface of a spacecraft model to alter the escape rate of photoelectrons. The packet of the observed potential oscillations becomes less positive with increasing magnetic field strength because more of the emitted photoelectrons are returned to the surface. As a result, the photoelectric charging time is increased, corresponding to a decrease in the response frequency of the photoemitting surface. The amplitude of the potential oscillations decreases when the response frequency bec. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7319 - 7326 DOI: 10.1002/jgra.v119.910.1002/2014JA019923 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA019923
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
Authors: Hartley D. P., Chen Y., Kletzing C A, Denton M. H., and Kurth W S
Title: Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes
Abstract: Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10−3 nT2, using the cold plasma dispersi. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020808 Available at: http://doi.wiley.com/10.1002/2014JA020808
More Details
Authors: Zhang X.-J., Thorne R., Artemyev A., Mourenas D., Angelopoulos V, et al.
Title: Properties of intense field-aligned lower-band chorus waves: Implications for nonlinear wave-particle interactions
Abstract: Resonant interactions between electrons and chorus waves are responsible for a wide range of phenomena in near‐Earth space (e.g., diffuse aurora, acceleration of MeV electrons, etc.). Although quasi‐linear diffusion is believed to be the primary paradigm for describing such interactions, an increasing number of investigations suggest that nonlinear effects are also important in controlling the rapid dynamics of electrons. However, present models of nonlinear wave‐particle interactions, which have been successfully used to describe individual short‐term events, are not directly applicable for a statistical evaluation of nonlinear effects and the long‐term dynamics of the outer radiation belt, because they lack information on the properties of intense (nonlinearly resonating with e. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025390 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025390
More Details
Authors: Hartley D. P., Kletzing C A, ík O., Chen L, and Horne R B
Title: Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations
Abstract: Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and between 1900 and 0900 MLT. This structure is similar to that reported for oblique chorus waves in the equatorial region, perhaps suggesting a causal link between the two wave modes. Ray tracing results from HOTRAY confirm that is feasible for these oblique chorus waves to. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024593 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024593/full
More Details
Authors: Turner D. L., Lee J. H., Claudepierre S G, Fennell J. F., Blake J B, et al.
Title: Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)
Abstract: Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth's magnetosphere. Here, for the first time, data from NASA's Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA's Van Allen Probes mission on 07 April 2016. Chorus wave activity was simultaneously observed by all six spacecraft over a broad range of L-shells (5.5 < L < 8.5), magnetic local time (06:00 < MLT < 09:00), and magnetic latitude (-32° < MLat < -15°), implying a large chorus active region. Eight chorus elements and their substructure were analyzed in detail with . . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024474 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024474/full
More Details
Authors: Matsui H., Torbert R B, Spence H E, Argall M. R., Alm L., et al.
Title: Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm
Abstract: There was a geomagnetic storm on 6–8 March 2016, in which Van Allen Probes A and B separated by ∼2.5 h measured increase of relativistic electrons with energies ∼ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measu. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024540 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024540/full
More Details
Authors: Li W, Mourenas D., Artemyev A., Agapitov O., Bortnik J, et al.
Title: Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves
Abstract: Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30–100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This . . .
Date: 08/2014 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2014GL061260 Available at: http://doi.wiley.com/10.1002/2014GL061260
More Details
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Electron flux enhancements at L  = 4.2 observed by Global Positioning System satellites: Relationship with solar wind and geomagnetic activity
Abstract: Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009‐2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non‐storm (or weak storm) times. Flux enhancements of 4 MeV electrons outside the plasmasphere occur during periods of low Pdyn and high AE. We perform superposed epoch analyses of GPS electron fluxes, along with solar wind and geomagnetic indices, 40 keV electron flu. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025497 Available at: http://doi.wiley.com/10.1029/2018JA025497http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025497/fullpdfhttps://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F2018JA025497
More Details
Authors: Matsui H., Paulson K. W., Torbert R B, Spence H E, Kletzing C A, et al.
Title: Nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012
Abstract: In this study, we investigate the possibility of nonlinearity in chorus waves during a geomagnetic storm on 1 November 2012. The data we use were measured by the Van Allen Probe B. Wave data and plasma sheet electron data are analyzed. Chorus waves were frequently measured in the morning side during the main phase of this storm. Large-amplitude chorus waves were seen of the order of ∼0.6 nT and >7 mV/m, which are similar to or larger than the typical ULF waves. The waves quite often consist of rising tones during the burst sampling. Since the rising tone is known as a signature of nonlinearity, a large portion of the waves are regarded as nonlinear at least during the burst sampling periods. These results underline the importance of nonlinearity in the dynamics of chorus waves. We furthe. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021772 Available at: http://doi.wiley.com/10.1002/2015JA021772
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, He Yihua, et al.
Title: Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes
Abstract: The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range ∼300–1500 Hz with the peak wave power density about 10−5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhi. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 4518 - 4529 DOI: 10.1002/2016JA022366 Available at: http://doi.wiley.com/10.1002/2016JA022366
More Details
chorus waves model
Authors: Agapitov O. V., Mourenas D., Artemyev A. V., Mozer F S, Hospodarsky G., et al.
Title: Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics
Abstract: Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial domain, rarely available based solely on the statistics obtained from only one satellite mission. Here, we seize the opportunity of synthesizing data from the Van Allen Probes and Cluster spacecraft to provide a new comprehensive chorus wave model in the outer radiation b. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024843 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024843/full
More Details
chorus waves,
Authors: Mourenas D., Zhang X.-J., Artemyev A. V., Angelopoulos V, Thorne R M, et al.
Title: Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets
Abstract: One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler‐mode chorus waves, is traditionally described using the quasi‐linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching ∼1% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long‐term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probe. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025417 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025417
More Details
chorus-driven acceleration
Authors: Liu Si, Yan Qi, Yang Chang, Zhou Qinghua, He Zhaoguo, et al.
Title: Quantifying Extremely Rapid Flux Enhancements of Radiation Belt Relativistic Electrons Associated With Radial Diffusion
Abstract: Previous studies have revealed a typical picture that seed electrons are transported inward under the drive of radial diffusion and then accelerated via chorus to relativistic energies. Here we show a potentially different process during the 2–3 October 2013 storm when Van Allen Probes observed extremely rapid (by about 50 times in 2 h) flux enhancements of relativistic (1.8–3.4 MeV) electrons but without distinct chorus at lower L-shells. Meanwhile, Time History of Events and Macroscale Interactions during Substorms satellites simultaneously measured enhanced chorus and fluxes of energetic (∼100–300 keV) seed electrons at higher L-shells. Numerical calculations show that chorus can efficiently accelerate seed electrons at L ∼ 8.3. Then radial diffusion further increased the phas. . .
Date: 02/2018 Publisher: Geophysical Research Letters Pages: 1262 - 1270 DOI: 10.1002/grl.v45.310.1002/2017GL076513 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076513/full
More Details
chorus-driven local acceleration
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Zhang X.-J., et al.
Title: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations
Abstract: Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak loca. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5520 - 5536 DOI: 10.1002/jgra.v121.610.1002/2016JA022400 Available at: http://doi.wiley.com/10.1002/2016JA022400
More Details
Chorus-type whistler waves
Authors: Breuillard H., Agapitov O., Artemyev A., Kronberg E. A., Haaland S. E., et al.
Title: Field-aligned chorus wave spectral power in Earth's outer radiation belt
Abstract: Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave–particle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40°. We use 10 years of magnetic and electric field wave power measured by STAFF-SA onboard Cluster spacecraft to model the initial (equatorial) chorus wave spectral power, as well as PEACE and RAPID measurements to model the properties of energetic electrons (~ 0.1–100 keV) in the outer radiation belt. The dependence of this distrib. . .
Date: 01/2015 Publisher: Annales Geophysicae Pages: 583 - 597 DOI: 10.5194/angeo-33-583-2015 Available at: http://www.ann-geophys.net/33/583/2015/http://www.ann-geophys.net/33/583/2015/angeo-33-583-2015.pdf
More Details
CIMI model
Authors: Bin Kang Suk-, Fok Mei-Ching, Komar Colin, Glocer Alex, Li Wen, et al.
Title: An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013
Abstract: We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May – 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs duri. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024879 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024879/full
More Details
CIMI numerical simulations
Authors: Aryan Homayon, Sibeck David G., Bin Kang Suk-, Balikhin Michael A., Fok Mei-Ching, et al.
Title: CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models
Abstract: Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmas. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024159 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024351/full
More Details
CIR storms
Authors: Bingham S. T., Mouikis C. G., Kistler L. M., Boyd A. J., Paulson K., et al.
Title: The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms
Abstract: Gyroresonant wave‐particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm‐phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic . . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025963 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025963
More Details
CIR-driven storm
Authors: Shen Xiao-Chen, Hudson Mary, Jaynes Allison, Shi Quanqi, Tian Anmin, et al.
Title: Statistical study of the storm-time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms
Abstract: CME- or CIR-driven storms can change the electron distributions in the radiation belt dramatically, which can in turn affect the spacecraft in this region or induce geomagnetic effects. The Van Allen Probes twin spacecraft, launched on 30 August 2012, orbit near the equatorial plane and across a wide range of L∗ with apogee at 5.8 RE and perigee at 620 km. Electron data from Van Allen Probes MagEIS and REPT instruments have been binned every six hours at L∗=3 (defined as 2.5 Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024100 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024100/full
More Details
climatology
Authors: Cohen Ross, Gerrard Andrew J., Lanzerotti Louis J., Soto-Chavez A. R., Kim Hyomin, et al.
Title: Climatology of high-β plasma measurements in Earth's inner magnetosphere
Abstract: Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high-resolution measurements of Earth's ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high-beta (β) plasma events (defined here as β > 1) as measured by the RBSPICE instrument in the ∼45 keV to ∼600 keV proton energy range in the inner magnetosphere (L < 5.8) has been constructed. In this paper we report this climatology of such high-β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high-β events in the RBSPICE energy range are associated with postdusk/premidni. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022513 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022513
More Details
Authors: Cohen Ross, Gerrard Andrew, Lanzerotti Louis, Soto-Chavez A. R., Kim Hyomin, et al.
Title: Climatology of high β plasma measurements in Earth's inner magnetosphere
Abstract: Since their launch in August 2012, the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instruments on the NASA Van Allen Probes spacecraft have been making continuous high resolution measurements of Earth's ring current plasma environment. After a full traversal through all magnetic local times, a climatology (i.e., a survey of observations) of high beta (β) plasma events (defined here as β>1) as measured by the RBSPICE instrument in the ∼45-keV to ∼600-keV proton energy range in the inner magnetosphere (L<5.8) has been constructed. In this paper we report this climatology of such high β plasma occurrences, durations, and their general characteristics. Specifically, we show that most high β events in the RBSPICE energy range are associated with post-dusk/pre-midnigh. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022513 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022513/full
More Details
Cluster
Authors: Ferradas C. P., Zhang J.-C., Kistler L. M., and Spence H E
Title: Heavy-ion dominance near Cluster perigees
Abstract: Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L-values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L-values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet du. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021063 Available at: http://doi.wiley.com/10.1002/2015JA021063http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021063
More Details
Authors: Allen R. C., Zhang J. -C., Kistler L. M., Spence H E, Lin R. -L., et al.
Title: A statistical study of EMIC waves observed by Cluster: 1. Wave properties
Abstract: Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, as well as local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the MLT-L frame within a limited MLAT range. In this study, we present a statistical analysis of EMIC wave properties using ten years (2001–2010) of data from Cluster, totaling 25,431 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021333 Available at: http://doi.wiley.com/10.1002/2015JA021333
More Details
CLUSTER SPACECRAFT
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Krasnoselskikh V. V.
Title: Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes
Abstract: In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narr. . .
Date: 06/2015 Publisher: Physics of Plasmas Pages: 062901 DOI: 10.1063/1.4922061 Available at: http://scitation.aip.org/content/aip/journal/pop/22/6/10.1063/1.4922061
More Details
CME
Authors: Kanekal S G, Baker D N, Henderson M G, Li W, Fennell J. F., et al.
Title: Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations
Abstract: During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both MagEIS and REPT instruments on the Van Allen Probes mission. Data from the MagEIS instrument establishes the behavior of lower energy (<1MeV) electrons which span both intermediary and seed populations du. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021395 Available at: http://doi.wiley.com/10.1002/2015JA021395
More Details
CME storms
Authors: Bingham S. T., Mouikis C. G., Kistler L. M., Boyd A. J., Paulson K., et al.
Title: The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms
Abstract: Gyroresonant wave‐particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm‐phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic . . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025963 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025963
More Details
CME-driven storm
Authors: Shen Xiao-Chen, Hudson Mary, Jaynes Allison, Shi Quanqi, Tian Anmin, et al.
Title: Statistical study of the storm-time radiation belt evolution during Van Allen Probes era: CME- versus CIR-driven storms
Abstract: CME- or CIR-driven storms can change the electron distributions in the radiation belt dramatically, which can in turn affect the spacecraft in this region or induce geomagnetic effects. The Van Allen Probes twin spacecraft, launched on 30 August 2012, orbit near the equatorial plane and across a wide range of L∗ with apogee at 5.8 RE and perigee at 620 km. Electron data from Van Allen Probes MagEIS and REPT instruments have been binned every six hours at L∗=3 (defined as 2.5 Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024100 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024100/full
More Details
CME-shock driven storm
Authors: Li Zhao, Hudson Mary, Kress Brian, and Paral Jan
Title: 3D test-particle simulation of the 17-18 March, 2013 CME-shock driven storm
Abstract: D test-particle simulation of energetic electrons (hundreds of keV to MeV), including both an initially trapped population and continuously injected population, driven by the Lyon-Fedder-Mobarry (LFM) global MHD model coupled with Magnetosphere-Ionosphere Coupler/Solver (MIX) boundary conditions, is performed for the March 17, 2013 storm. The electron trajectories are calculated and weighted using the ESA model for electron flux vs. energy and L. The simulation captures the flux dropout at both GOES-13 and GOES-15 locations after a strong CME-shock arrival which produced a Dst=−132 nT storm, and recovery to the pre-storm value later, consistent with GOES satellite measurements. This study provides the first 3D test-particle simulation combining the trapped and injected populations. The r. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064627 Available at: http://doi.wiley.com/10.1002/2015GL064627
More Details
coherence coefficient
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
coherence scales
Authors: Blum L. W., Agapitov O., Bonnell J. W., Kletzing C., and Wygant J
Title: EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements
Abstract: Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30–60 s is observable during close conjunction events but is lost as spacecraft s. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068799 Available at: http://doi.wiley.com/10.1002/2016GL068799
More Details
coherent waves
Authors: Li Jinxing, Bortnik Jacob, Li Wen, Thorne Richard M, Ma Qianli, et al.
Title: Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales
Abstract: Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150–500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured ov. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 1871-1882 DOI: 10.1002/2016JA023706 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023706/full
More Details

Pages