Biblio

Found 646 results

Pages

2015
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Empirical model of lower band chorus wave distribution in the outer radiation belt
Abstract: Accurate modeling of wave-particle interactions in the radiation belts requires detailed information on wave amplitudes and wave-normal angular distributions over L shells, magnetic latitudes, magnetic local times, and for various geomagnetic activity conditions. In this work, we develop a new and comprehensive parametric model of VLF chorus waves amplitudes and obliqueness in the outer radiation belt using statistics of VLF measurements performed in the chorus frequency range during 10 years (2001–2010) aboard the Cluster spacecraft. We used data from the Spatio-Temporal Analysis of Field Fluctuations-Spectrum Analyzer experiment, which spans a total frequency range from 8 Hz to 4 kHz. The statistical model is presented in the form of an analytical function of latitude and Kp (or Dst) i. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021829 Available at: http://doi.wiley.com/10.1002/2015JA021829http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021829
More Details
Authors: Reeves Geoffrey D, Friedel Reiner H W, Larsen Brian A., Skoug Ruth M., Funsten Herbert O., et al.
Title: Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Abstract: We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energie. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021569 Available at: http://doi.wiley.com/10.1002/2015JA021569http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021569
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Kletzing C A, Reeves G D, et al.
Title: Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm-time inner magnetosphere
Abstract: We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfvén waves and kinetic field-line resonances. The fluctuations extend from L≈3 out to the apogee of the Van Allen Probes spacecraft at L≈6.5. They thereby span most of the L-shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energizat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066674 Available at: http://doi.wiley.com/10.1002/2015GL066674http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066674
More Details
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Nonlinear Generation of Electromagnetic Waves through Induced Scattering by Thermal Plasma
Abstract: We demonstrate the conversion of electrostatic pump waves into electromagnetic waves through nonlinear induced scattering by thermal particles in a laboratory plasma. Electrostatic waves in the whistler branch are launched that propagate near the resonance cone. When the amplitude exceeds a threshold ~5 × 10−6 times the background magnetic field, wave power is scattered below the pump frequency with wave normal angles (~59°), where the scattered wavelength reaches the limits of the plasma column. The scattered wave has a perpendicular wavelength that is an order of magnitude larger than the pump wave and longer than the electron skin depth. The amplitude threshold, scattered frequency spectrum, and scattered wave normal angles are in good agreement with theory. The results may affect t. . .
Date: 12/2015 Publisher: Scientific Reports Pages: 17852 DOI: 10.1038/srep17852 Available at: http://www.nature.com/articles/srep17852
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt
Abstract: Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ∼1–10 keV electrons and their acceleration up to 100–300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We de. . .
Date: 12/2015 Publisher: Geophysical Research Letters Pages: 10,140 - 10,149 DOI: 10.1002/2015GL066887 Available at: http://doi.wiley.com/10.1002/2015GL066887http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066887
More Details
Authors: Zhima Zeren, Chen Lunjin, Fu Huishan, Cao Jinbin, Horne Richard, et al.
Title: Observations of discrete magnetosonic waves off the magnetic equator
Abstract: Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. We report observations of magnetosonic waves well off the equator at geomagnetic latitudes from −16.5°to −17.9° and L shell ~2.7–4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regions located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations mat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066255 Available at: http://doi.wiley.com/10.1002/2015GL066255http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066255
More Details
Authors: Shi Run, Summers Danny, Ni Binbin, Fennell Joseph F., Blake Bernard, et al.
Title: Survey of radiation belt energetic electron pitch angle distributions based on the Van Allen Probes MagEIS measurements
Abstract: A statistical survey of electron pitch angle distributions (PADs) is performed based on the pitch angle resolved flux observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument on board the Van Allen Probes during the period from 1 October 2012 to 1 May 2015. By fitting the measured PADs to a sinnα form, where α is the local pitch angle and n is the power law index, we investigate the dependence of PADs on electron kinetic energy, magnetic local time (MLT), the geomagnetic Kp index and L-shell. The difference in electron PADs between the inner and outer belt is distinct. In the outer belt, the common averaged n values are less than 1.5, except for large values of the Kp index and high electron energies. The averaged n values vary considerably with MLT, with a peak in th. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021724 Available at: http://doi.wiley.com/10.1002/2015JA021724http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021724
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zong Q.-G., Zhou X.-Z., et al.
Title: Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons
Abstract: Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fl. . .
Date: 12/2015 Publisher: Nature Communications Pages: 10096 DOI: 10.1038/ncomms10096 Available at: http://www.nature.com/doifinder/10.1038/ncomms10096
More Details
Authors: Agapitov O. V., Mozer F. S., Artemyev A. V., Mourenas D., and Krasnoselskikh V. V.
Title: Wave-particle interactions in the outer radiation belts
Abstract: Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.
Date: 12/2015 Publisher: Advances in Astronomy and Space Physics Pages: 68-74 DOI: N/A Available at: http://aasp.kiev.ua/volume5/068-074-Agapitov.pdf
More Details
Authors: Khazanov G. V., Tripathi A. K., Sibeck D., Himwich E., Glocer A., et al.
Title: Electron distribution function formation in regions of diffuse aurora
Abstract: The precipitation of high-energy magnetospheric electrons (E ∼ 600 eV–10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, ∼700–800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly in. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9891–9915 DOI: 10.1002/2015JA021728 Available at: http://doi.wiley.com/10.1002/2015JA021728http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021728
More Details
Authors: Ganguli G., Crabtree C., Mithaiwala M., Rudakov L., and Scales W.
Title: Evolution of lower hybrid turbulence in the ionosphere
Abstract: Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenom- enon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result i. . .
Date: 11/2015 Publisher: Physics of Plasmas Pages: 112904 DOI: 10.1063/1.4936281 Available at: http://scitation.aip.org/content/aip/journal/pop/22/11/10.1063/1.4936281
More Details
Authors: Omura Yoshiharu, Miyashita Yu, Yoshikawa Masato, Summers Danny, Hikishima Mitsuru, et al.
Title: Formation process of relativistic electron flux through interaction with chorus emissions in the Earth's inner magnetosphere
Abstract: We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green's function for one cycle of chorus wave-particle interaction. We obtain the Green's functions for the energy range 10 keV–6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green's f. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9545–9562 DOI: 10.1002/2015JA021563 Available at: http://doi.wiley.com/10.1002/2015JA021563http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021563
More Details
Authors: Spasojevic M., Shprits Y.Y., and Orlova K.
Title: Global Empirical Models of Plasmaspheric Hiss using Van Allen Probes
Abstract: Plasmaspheric hiss is a whistler mode emission that permeates the Earth's plasmasphere and is a significant driver of energetic electron losses through cyclotron-resonant pitch angle scattering. The EMFISIS instrument on the Van Allen Probes mission provides vastly improved measurements of the hiss wave environment including continuous measurements of the wave magnetic field cross-spectral matrix and enhanced low frequency coverage. Here, we develop empirical models of hiss wave intensity using two years of Van Allen Probes data. First, we describe the construction of the hiss database. Then, we compare the hiss spectral distribution and integrated wave amplitude obtained from Van Allen Probes to those previously extracted from the CRRES mission. Next, we develop a cubic regression model o. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021803 Available at: http://doi.wiley.com/10.1002/2015JA021803http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021803
More Details
Authors: Rodger Craig J., Hendry Aaron T., Clilverd Mark A., Kletzing Craig A., Brundell James B., et al.
Title: High-resolution in situ observations of electron precipitation-causing EMIC waves
Abstract: Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering-driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite-based observations of the characteristics of EMIC waves, with satellite and ground-based observations of the EMIC-induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC-induced electron precipitation inferred from coincident pr. . .
Date: 11/2015 Publisher: Geophysical Research Letters Pages: 9633 - 9641 DOI: 10.1002/grl.v42.2210.1002/2015GL066581 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL066581/full
More Details
Authors: Srinivasan Dipak K., Adams Norm, and Wallis Robert
Title: In-flight performance of the Van Allen Probes RF telecommunications system
Abstract: The NASA Van Allen Probes mission (previously called the Radiation Belt Storm Probes) successfully launched on 30 August 2012. The twin spacecraft, designed, built, and operated by The Johns Hopkins University Applied Physics Laboratory (JHU/APL), has been successfully operating within Earth׳s radiation belts since then, returning critical science data revealing new insights into the physics of the radiation belts. Because of the extreme radiation environment, all spacecraft subsystems including the communications system had to make special accommodations to withstand the effects of the radiation. Each Van Allen Probes spacecraft׳s telecommunications system includes an S-band version of the Frontier Radio, a solid-state power amplifier, RF routing components, and dual low-gain antenna. . .
Date: 11/2015 Publisher: Acta Astronautica Pages: 211 - 221 DOI: 10.1016/j.actaastro.2015.05.001 Available at: http://www.sciencedirect.com/science/article/pii/S0094576515001824
More Details
Authors: Malaspina David M., Claudepierre Seth G., Takahashi Kazue, Jaynes Allison N., Elkington Scot R, et al.
Title: Kinetic Alfvén Waves and Particle Response Associated with a Shock-Induced, Global ULF Perturbation of the Terrestrial Magnetosphere
Abstract: On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. The Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portions of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere. . .
Date: 11/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065935 Available at: http://doi.wiley.com/10.1002/2015GL065935http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL065935
More Details
Authors: Takahashi Kazue, Waters Colin, Glassmeier Karl-Heinz, Kletzing Craig, Kurth William, et al.
Title: Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves
Abstract: The power spectrum of the compressional component of magnetic fields observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal mode standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had a low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from two. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021780 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021780/abstract
More Details
Authors: Yu J., Li L.Y., Cao J. B., Yuan Z. G., Reeves G D, et al.
Title: Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement
Abstract: By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*≥ 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°-150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|< 0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021460 Available at: http://doi.wiley.com/10.1002/2015JA021460http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021460
More Details
Authors: Sakaguchi Kaori, Nagatsuma Tsutomu, Reeves Geoffrey, and Spence Harlan E.
Title: Prediction of MeV electron fluxes throughout the outer radiation belt using multivariate autoregressive models
Abstract: The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary (GEO) and medium Earth orbit (MEO). To provide alerts of electron flux enhancements, sixteen prediction models of the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements of omni-directional 2.3 MeV electron flux from the Van Allen Probes mission as well as >2 MeV electrons from the GOES-15 spacecraft were used as the predictors. Model explanatory parameters were selected from solar wind parameters, the electron log-flux at GEO, and geo. . .
Date: 11/2015 Publisher: Space Weather Pages: n/a - n/a DOI: 10.1002/2015SW001254 Available at: http://doi.wiley.com/10.1002/2015SW001254http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015SW001254
More Details
Authors: Xiong Ying, Xie Lun, Pu Zuyin, Fu Suiyan, Chen Lunjin, et al.
Title: Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms
Abstract: Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87% of the storms, 0.3–2.5 MeV electron fluxes show an increase, whereas 2.5–14 MeV electron fluxes increase in only 35% of the storms. Superposed epoch analyses suggest that such “energy-dependent” responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examin. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9513–9523 DOI: 10.1002/2015JA021440 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021440/full
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Abstract: Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmasp. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021148 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
More Details
Authors: Bin Kang Suk-, Min Kyoung-Wook, Fok Mei-Ching, Hwang Junga, and Choi Cheong-Rim
Title: Estimation of pitch angle diffusion rates and precipitation time scales of electrons due to EMIC waves in a realistic field model
Abstract: Electromagnetic ion cyclotron (EMIC) waves are closely related to precipitating loss of relativistic electrons in the radiation belts, and thereby, a model of the radiation belts requires inclusion of the pitch angle diffusion caused by EMIC waves. We estimated the pitch angle diffusion rates and the corresponding precipitation time scales caused by H and He band EMIC waves using the Tsyganenko 04 (T04) magnetic field model at their probable regions in terms of geomagnetic conditions. The results correspond to enhanced pitch angle diffusion rates and reduced precipitation time scales compared to those based on the dipole model, up to several orders of magnitude for storm times. While both the plasma density and the magnetic field strength varied in these calculations, the reduction of the . . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8529 - 8546 DOI: 10.1002/2014JA020644 Available at: http://doi.wiley.com/10.1002/2014JA020644http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2014JA020644
More Details
Authors: Motoba T., Ohtani S, Anderson B J, Korth H., Mitchell D., et al.
Title: On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations
Abstract: Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8707 - 8722 DOI: 10.1002/jgra.v120.1010.1002/2015JA021676 Available at: http://doi.wiley.com/10.1002/jgra.v120.10http://doi.wiley.com/10.1002/2015JA021676http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021676
More Details
Authors: Motoba Tetsuo, Takahashi Kazue, Rodriguez Juan V., and Russell Christopher T.
Title: Giant pulsations on the afternoonside: Geostationary satellite and ground observations
Abstract: Giant pulsations (Pgs) are a special class of oscillations recognized in ground magnetometer records as exhibiting highly regular sinusoidal waveforms in the east-west component with periods around 100s. Previous statistical studies showed that Pgs occur almost exclusively on the morningside with peak occurrence in the postmidnight sector. In this paper, we present observations of Pgs extending to the afternoonside, using data from the GOES13 and 15 geostationary satellites and multiple ground magnetometers located in North America. For a long-lasting event on 29 February 2012, which spanned ∼08–18h magnetic local time, we show that basic Pg properties did not change with the local time, although the period of the pulsations was longer at later local time due to increasing mass loading. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8350 - 8367 DOI: 10.1002/2015JA021592 Available at: http://doi.wiley.com/10.1002/2015JA021592http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021592
More Details
Authors: Ferradas C. P., Zhang J.-C., Kistler L. M., and Spence H E
Title: Heavy-ion dominance near Cluster perigees
Abstract: Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L-values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L-values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet du. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021063 Available at: http://doi.wiley.com/10.1002/2015JA021063http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021063
More Details
Authors: Shue Jih-Hong, Hsieh Yi-Kai, Tam Sunny W. Y., Wang Kaiti, Fu Hui Shan, et al.
Title: Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere
Abstract: Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These res. . .
Date: 10/2015 Publisher: Geophysical Research Letters Pages: 8294 - 8301 DOI: 10.1002/2015GL066107 Available at: http://doi.wiley.com/10.1002/2015GL066107http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066107
More Details
Authors: Selesnick R. S.
Title: Measurement of inner radiation belt electrons with kinetic energy above 1 MeV
Abstract: Data from the Proton-Electron Telescope on the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) satellite, taken during 1992–2009, are analyzed for evidence of inner radiation belt electrons with kinetic energy E > 1 MeV. It is found that most of the data from a detector combination with a nominal energy threshold of 1 MeV were, in fact, caused by a chance coincidence response to lower energy electrons or high-energy protons. In particular, there was no detection of inner belt or slot region electrons above 1 MeV following the 2003 Halloween storm injection, though they may have been present. However, by restricting data to a less-stable, low-altitude trapping region, a persistent presence of inner belt electrons in the energy range 1 to 1.6 MeV is demonstrated. Their soft. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8339 - 8349 DOI: 10.1002/2015JA021387 Available at: http://doi.wiley.com/10.1002/2015JA021387http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021387
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, and Artemyev A. V.
Title: Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions
Abstract: Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi me. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021644 Available at: http://doi.wiley.com/10.1002/2015JA021644http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021644
More Details
Authors: Zhang J.-C., Kistler L. M., Spence H E, Wolf R. A., Reeves G., et al.
Title: “Trunk-like” heavy ion structures observed by the Van Allen Probes
Abstract: Dynamic ion spectral features in the inner magnetosphere are the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. We report “trunk-like” ion structures observed by the Van Allen Probes on 2 November 2012. This new type of ion structure looks like an elephant's trunk on an energy-time spectrogram, with the energy of the peak flux decreasing Earthward. The trunks are present in He+ and O+ ions but not in H+. During the event, ion energies in the He+ trunk, located at L = 3.6–2.6, MLT = 9.1–10.5, and MLAT = −2.4–0.09°, vary monotonically from 3.5 to 0.04 keV. The values at the two end points of the O+ trunk are: energy = 4.5–0.7 keV, L = 3.6–2.5, MLT = 9.1–10.7, and MLAT = −2.4–0.4°. Results from backward ion drift path tra. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021822 Available at: http://doi.wiley.com/10.1002/2015JA021822http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021822
More Details
Authors: Chaston C. C., Bonnell J. W., Kletzing C A, Hospodarsky G B, Wygant J R, et al.
Title: Broadband low frequency electromagnetic waves in the inner magnetosphere
Abstract: A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 ± 0.6 for fsc < fb andα = 2.9 ± 0.6 for fsc > fb. A is . . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021690 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021690/abstract
More Details
Authors: Shprits Yuri Y, Kellerman Adam, Drozdov Alexander, Spense Harlan, Reeves Geoffrey, et al.
Title: Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations
Abstract: This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations in. . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065230 Available at: http://doi.wiley.com/10.1002/2015GL065230
More Details
Authors: Katsavrias C., Daglis I. A., Li W, Dimitrakoudis S., Georgiou M., et al.
Title: Combined effects of concurrent Pc5 and chorus waves on relativistic electron dynamics
Abstract: We present electron phase space density (PSD) calculations as well as concurrent Pc5 and chorus wave activity observations during two intense geomagnetic storms caused by interplanetary coronal mass ejections (ICMEs) resulting in contradicting net effect. We show that, during the 17 March 2013 storm, the coincident observation of chorus and relativistic electron enhancements suggests that the prolonged chorus wave activity seems to be responsible for the enhancement of the electron population in the outer radiation belt even in the presence of pronounced outward diffusion. On the other hand, the significant depletion of electrons, during the 12 September 2014 storm, coincides with long-lasting outward diffusion driven by the continuous enhanced Pc5 activity since chorus wave a. . .
Date: 09/2015 Publisher: Annales Geophysicae Pages: 1173 - 1181 DOI: 10.5194/angeo-33-1173-2015 Available at: http://www.ann-geophys.net/33/1173/2015/
More Details
Authors: Valek P. W., Goldstein J, Jahn J -M, McComas D J, and Spence H E
Title: First joint in situ and global observations of the medium-energy oxygen and hydrogen in the inner magnetosphere
Abstract: We present the first simultaneous observations of the in situ ions and global Energetic Neutral Atom (ENA) images of the composition-separated, medium-energy (~1–50 keV) particle populations of the inner magnetosphere. The ENA emissions are mapped into L shell/magnetic local time space based on the exospheric density along the line of sight (LOS). The ENA measurement can then be scaled to determine an average ion flux along a given LOS. The in situ ion flux tends to be larger than the scaled ENAs at the same local time. This indicates that the ion population is more concentrated in the Van Allen Probes orbital plane than distributed along the Two Wide-angle Imaging Neutral-atom Spectrometers LOS. For the large storm of 14 November 2012, we observe that the concentration of O (in situ i. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 7615 - 7628 DOI: 10.1002/2015JA021151 Available at: http://doi.wiley.com/10.1002/2015JA021151http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021151
More Details
Authors: Skov Tamitha Mulligan, Fennell Joseph F., Roeder James L., Blake Bernard, and Claudepierre Seth G.
Title: Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related . . .
Date: 09/2015 Publisher: IEEE Transactions on Plasma Science Pages: 3070 - 3074 DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7247811http://xplorestaging.ieee.org/ielx7/27/7247791/07247811.pdf?arnumber=7247811
More Details
Authors: Skov Mulligan, Fennell J.F., Roeder J.L., Blake J.B., and Claudepierre S.G.
Title: Internal Charging Hazards in Near-Earth Space during Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. Data from the MagEIS suite of sensors measures energy spectra, fluxes, and yields electron deposition rates that can cause internal charging. We use omni-directional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding (similar to Fennell et al., 2010). We show examples of charge deposition rates during times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from late 2012 through 2013. These charge deposition rates are related to charging levels quite possibly encountered. . .
Date: 09/2015 Publisher: JPL DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/document/7247811/?reload=true&arnumber=7247811
More Details
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts
Abstract: Important nonlinear wave-wave and wave-particle interactions that occur in the Earth's Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85° . When the pump amplitude exceeds a threshold ∼5×10−6 times the background magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (∼55°) . The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB/B0∼7×10−7. . .
Date: 09/2015 Publisher: Physics of Plasmas Pages: 091503 DOI: 10.1063/1.4928944 Available at: http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4928944
More Details
Authors: Nikoukar Romina, Bust Gary, and Murr David
Title: A novel data assimilation technique for the plasmasphere
Abstract: We present a novel technique for imaging and data assimilation of the topside ionosphere and plasmasphere. The methodology is based upon the 3 dimensional variational technique (3DVAR), where an empirical background model is utilized. However, to prevent non-physical vertical variation in density estimates, we devise statistical methods to enforce a roughness penalty in the traditional 3DVAR optimization. The upward looking total electron content (TEC) observations from the Global Positioning System (GPS) receiver onboard Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) satellites are utilized in the assimilation algorithm. The estimation results show reasonable agreement with in-situ density measurements of Defense Meteorological Satellite Program satellites. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021455 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021455/abstract
More Details
Authors: Saikin A. A., Zhang J.-C., Allen R.C., Smith C W, Kistler L. M., et al.
Title: The occurrence and wave properties of H + -, He + -, and O + -band EMIC waves observed by the Van Allen Probes
Abstract: We perform a statistical study of electromagnetic ion cyclotron (EMIC) waves detected by the Van Allen Probes mission to investigate the spatial distribution of their occurrence, wave power, ellipticity, and normal angle. The Van Allen Probes have been used which allow us to explore the inner magnetosphere (1.1 to 5.8 Re). Magnetic field measurements from the Electric and Magnetic Field Instrument Suite and Integrated Science onboard the Van Allen Probes are used to identify EMIC wave events for the first 22 months of the mission operation (8 September 2012 – 30 June 2014). EMIC waves are examined in H+-, He+-, and O+-bands. Over 700 EMIC wave events have been identified over the three different wave bands (265 H+-band events, 438 He+-band events, and 68 O+-band events). EMIC wave events. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021358 Available at: http://doi.wiley.com/10.1002/2015JA021358
More Details
Authors: Xiao Fuliang, Zhou Qinghua, He Yihua, Yang Chang, Liu Si, et al.
Title: Penetration of magnetosonic waves into the plasmasphere observed by the Van Allen Probes
Abstract: During the small storm on 14–15 April 2014, Van Allen Probe A measured a continuously distinct proton ring distribution and enhanced magnetosonic (MS) waves along its orbit outside the plasmapause. Inside the plasmasphere, strong MS waves were still present but the distinct proton ring distribution was falling steeply with distance. We adopt a sum of subtracted bi-Maxwellian components to model the observed proton ring distribution and simulate the wave trajectory and growth. MS waves at first propagate toward lower L shells outside the plasmasphere, with rapidly increasing path gains related to the continuous proton ring distribution. The waves then gradually cross the plasmapause into the deep plasmasphere, with almost unchanged path gains due to the falling proton ring distribution an. . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065745 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL065745/full
More Details
Authors: Kanekal S G, Baker D N, Henderson M G, Li W, Fennell J. F., et al.
Title: Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations
Abstract: During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both MagEIS and REPT instruments on the Van Allen Probes mission. Data from the MagEIS instrument establishes the behavior of lower energy (<1MeV) electrons which span both intermediary and seed populations du. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021395 Available at: http://doi.wiley.com/10.1002/2015JA021395
More Details
Authors: Ni Binbin, Cao Xing, Zou Zhengyang, Zhou Chen, Gu Xudong, et al.
Title: Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales
Abstract: To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1–4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle s. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 7357 - 7373 DOI: 10.1002/2015JA021466 Available at: http://doi.wiley.com/10.1002/2015JA021466http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021466
More Details
Authors: Li W, Thorne R M, Bortnik J, Baker D N, Reeves G D, et al.
Title: Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis
Abstract: Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and . . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065342 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL065342/abstract
More Details
Authors: Macek W. M., Wawrzaszek A., and Sibeck D G
Title: THEMIS observation of intermittent turbulence behind the quasi-parallel and quasi-perpendicular shocks
Abstract: Turbulence is complex behavior that is ubiquitous in nature, but its mechanism is still not sufficiently clear. Therefore, the main aim of this paper is analysis of intermittent turbulence in magnetospheric and solar wind plasmas using a statistical approach based on experimental data acquired from space missions. The quintet spacecraft of Time History of Events and Macroscale Interactions during Substorms (THEMIS) allows us to investigate the details of turbulent plasma parameters behind the collisionless shocks. We investigate both the solar wind and magnetospheric data by using statistical probability distribution functions of Elsässer variables that can reveal the intermittent character of turbulence in space plasma. Our results suggest that turbulence behind the quasi-perpendicular s. . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 7466 - 7476 DOI: 10.1002/2015JA021656 Available at: http://doi.wiley.com/10.1002/2015JA021656http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021656
More Details
Authors: Cattell C. A., Breneman A. W., Thaller S. A., Wygant J R, Kletzing C A, et al.
Title: Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study
Abstract: We show the first evidence for locally excited chorus at frequencies below 0.1 fce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5 fce and f/fce decreases rapidly, often to frequencies well below 0.1 fce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms. . .
Date: 09/2015 Publisher: Geophysical Research Letters Pages: 7273 - 7281 DOI: 10.1002/2015GL065565 Available at: http://doi.wiley.com/10.1002/2015GL065565http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL065565
More Details
Authors: Mourenas D., Artemyev A. V., and Agapitov O.V.
Title: Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere
Abstract: Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021623 Available at: http://doi.wiley.com/10.1002/2015JA021623
More Details
Authors: Zhao H., Li X, Baker D N, Fennell J. F., Blake J B, et al.
Title: The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements
Abstract: Enabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021533 Available at: http://doi.wiley.com/10.1002/2015JA021533
More Details
Authors: Shprits Y Y, and Spasojevic M.
Title: Global and comprehensive analysis of the inner magnetosphere as a coupled system: Physical understanding and applications
Abstract: The third Inner Magnetosphere Coupling (IMC III) workshop was held March 2015 at University of California, Los Angeles. The workshop included extensive discussion of space weather and applications bring together scientists from the solar wind, magnetosphere and ionospheric communities as well as space weather stakeholders and researchers focusing on translational research and applications in industry.
Date: 08/2015 Publisher: Space Weather DOI: 10.1002/2015SW001295 Available at: http://doi.wiley.com/10.1002/2015SW001295http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015SW001295
More Details
Authors: Titova E. E., Kozelov B. V., Demekhov A. G., Manninen J., Santolik O, et al.
Title: Identification of the source of quasiperiodic VLF emissions using ground-based and Van Allen Probes satellite observations
Abstract: We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2–6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0–4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes, the time interval between quasiperiodic elements decreased from 6 min to 3 min. We find one-to-one correspondence between the quasiperiodic elements detected by Van Allen Probe-A and on the ground, which indicates the temporal nature of the observed variation in the time in. . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6137 - 6145 DOI: 10.1002/grl.v42.1510.1002/2015GL064911 Available at: http://doi.wiley.com/10.1002/2015GL064911
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at: http://doi.wiley.com/10.1002/grl.v42.15http://doi.wiley.com/10.1002/2015GL064988
More Details
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts
Abstract: Important nonlinear wave-wave and wave-particle interactions that occur in the Earth’s Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85º. When the pump amplitude exceeds a threshold ~5 x10^6 times the back- ground magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (~55º). The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB=B_0 ~7 x 10^-7. . .
Date: 08/2015 Publisher: Physics of Plasmas DOI: 10.1063/1.4928944 Available at: http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4928944
More Details

Pages