Biblio

Found 3587 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
coincidence occurrence rate
Authors: Qin Murong, Hudson Mary, Millan Mary, Woodger Leslie, and Shekhar Sapna
Title: Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been proposed to cause Relativistic Electron Precipitation (REP). In our study, we carry out 4 years of analysis from 2013 to 2016, with relativistic electron precipitation spikes obtained from POES satellites and EMIC waves observation from Van Allen Probes. Among the 473 coincidence events when POES satellites go through the region conjugate to EMIC wave activity, only 127 are associated with REP. Additionally, the coincidence occurrence rate is about 10% higher than the random coincidence occurrence rate, indicating that EMIC waves and relativistic electrons can be statistically related, but the link is weaker than expected. H+ band EMIC waves have been regarded as less important than He+ band EMIC waves for the precipitation of relativist. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025419 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025419
More Details
cold ion composition
Authors: Qin Murong, Hudson Mary, Li Zhao, Millan Robyn, Shen Xiaochen, et al.
Title: Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015
Abstract: In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4–3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC w. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025726 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025726
More Details
cold ion heating
Authors: Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Qiao Zheng, Yao Fei, et al.
Title: Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere
Abstract: Fast magnetosonic (MS) waves play an important role in the dynamics of the inner magnetosphere. Theoretical prediction and simulation have demonstrated that MS waves can heat cold ions. However, direct observational evidence of cold ion heating by MS waves has so far remained elusive. In this paper, we show a typical event of cold ion heating by magnetosonic waves in a density cavity of the plasmasphere with observations of the Van Allen Probe mission on 22 August 2013. During enhancements of the MS wave intensity in the density cavity, the fluxes of trapped H+ and He+ ions with energies of 10–100 eV were observed to increase, implying that cold plasmaspheric ions were heated through high-order resonances with the MS waves. Based on simultaneous observations of ring current protons, we h. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024919 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024919/full
More Details
Cold plasmaspheric electrons
Authors: Ren Jie, Zong Q. G., Zhou X. Z., Spence H E, Funsten H O, et al.
Title: Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study
Abstract: Six years of Van Allen Probes data are used to investigate cold plasmaspheric electrons affected by ultralow‐frequency (ULF) waves in the inner magnetosphere (L<7) including spatial distributions, occurrence conditions, and resonant energy range. Events exhibit a global distribution within L= 4–7 but preferentially occur at L∼5.5–7 in the dayside, while there is higher occurrence rate in the duskside than dawnside. They can occur under different geomagnetic activities and solar wind velocities (VS), but the occurrence rates are increasing with larger AE, |SYMH|, and VS. These features are closely associated with the generation and propagation of ULF waves in Pc4 (45–150 s) and Pc5 (150–600 s) bands. Combined with electron observations from HOPE instrument, the resonant energies. . .
Date: 10/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 7954 - 7965 DOI: 10.1029/2019JA027009 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027009
More Details
Authors: Ren Jie, Zong Q. G., Miyoshi Y, Zhou X. Z., Wang Y. F., et al.
Title: Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation
Abstract: We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations su. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024316 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024316/full
More Details
Cold plasmaspheric electrons acceleration
Authors: Ren Jie, Zong Qiu-Gang, Miyoshi Yoshizumi, Rankin Robert, Spence Harlan E, et al.
Title: A comparative study of ULF waves' role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation
Abstract: By analyzing observations from Van Allen Probes in its inbound and outbound orbits, we present evidence of coherent enhancement of cold plasmaspheric electrons and ions due to drift‐bounce resonance with ULF waves. From 18:00 UT on 28 May 2017 to 10:00 UT on 29 May 2017, newly formed poloidal mode standing ULF waves with significant electric field oscillations were observed in two consecutive orbits when Probe B was travelling inbound. In contrast to observations during outbound orbits, the cold (< 150 eV) electorns measured by the HOPE instrument were characterized by flux enhancements several times larger and bi‐directional pitch angle distributions during inbound orbits. The electron number density inferred from upper hybrid waves is twice as larger as during inbound orbits, which w. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025255 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025255
More Details
Combined scattering effect
Authors: Hua Man, Ni Binbin, Fu Song, Gu Xudong, Xiang Zheng, et al.
Title: Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves
Abstract: We report a typical event that fast magnetosonic (MS) waves, exohiss, and two‐band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2‐D Fokker‐Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS waves are most intense, the electron butterfly distribution is inhibited by exohiss and chorus, and electrons are considerably accelerated by combined scattering of MS and chorus waves. The simulated electron pitch angle distributions exhibit the variation trend co. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079533 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079533
More Details
combined scattering rates
Authors: He Fengming, Cao Xing, Ni Binbin, Xiang Zheng, Zhou Chen, et al.
Title: Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study
Abstract: Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, de. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022483 Available at: http://doi.wiley.com/10.1002/2016JA022483
More Details
comparison
Authors: Brito Thiago V., and Morley Steven K.
Title: Improving empirical magnetic field models by fitting to in situ data using an optimized parameter approach
Abstract: A method for comparing and optimizing the accuracy of empirical magnetic field models using in situ magnetic field measurements is presented. The optimization method minimizes a cost function - τ - that explicitly includes both a magnitude and an angular term. A time span of 21 days, including periods of mild and intense geomagnetic activity, was used for this analysis. A comparison between five magnetic field models (T96, T01S, T02, TS04, TS07) widely used by the community demonstrated that the T02 model was, on average, the most accurate when driven by the standard model input parameters. The optimization procedure, performed in all models except TS07, generally improved the results when compared to unoptimized versions of the models. Additionally, using more satellites in the optimizat. . .
Date: 10/2017 Publisher: Space Weather DOI: 10.1002/2017SW001702 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001702/full
More Details
composition
Authors: Goldstein J, Gallagher D., Craven P. D., Comfort R. H., Genestreti K. J., et al.
Title: Temperature Dependence of Plasmaspheric Ion Composition
Abstract: We analyze a database of Dynamics Explorer‐1 (DE‐1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an example using data from the Van Allen Probes mission. Measurement of light ion concentrations above 1 electron volt (eV) are a reasonable proxy for the concentrations of colder (eV) ions. Warmer O+ ion concentrations may be extrapolated to colder temperatures using our f. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 6585 - 6595 DOI: 10.1029/2019JA026822 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026822
More Details
Compressional oscillations
Authors: Takahashi Kazue, Waters Colin, Glassmeier Karl-Heinz, Kletzing Craig, Kurth William, et al.
Title: Multifrequency compressional magnetic field oscillations and their relation to multiharmonic toroidal mode standing Alfvén waves
Abstract: The power spectrum of the compressional component of magnetic fields observed by the Van Allen Probes spacecraft near the magnetospheric equator in the dayside plasmasphere sometimes exhibits regularly spaced multiple peaks at frequencies below 50 mHz. We show by detailed analysis of events observed on two separate days in early 2014 that the frequencies change smoothly with the radial distance of the spacecraft and appear at or very near the frequencies of the odd harmonics of mutiharmonic toroidal mode standing Alfvén waves seen in the azimuthal component of the magnetic field. Even though the compressional component had a low amplitude on one of the selected days, its spectral properties are highlighted by computing the ratio of the spectral powers of time series data obtained from two. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021780 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021780/abstract
More Details
Compressional ULF wave
Authors: Liu H., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Compressional ULF wave modulation of energetic particles in the inner magnetosphere
Abstract: We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 − 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L⋆≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the parti. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022706 Available at: http://doi.wiley.com/10.1002/2016JA022706
More Details
compressional waves
Authors: Mager Olga V., Chelpanov Maksim A., Mager Pavel N., Klimushkin Dmitri Yu., and Berngardt Oleg I.
Title: Conjugate Ionosphere‐Magnetosphere Observations of a Sub‐Alfvénic Compressional Intermediate‐ m Wave: A Case Study Using EKB Radar and Van Allen Probes
Abstract: A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5‐ to 3‐hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6–7.8 Earth's radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈−10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field‐aligned magnetic component was approximately 2 times larger than both transverse components and ac. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026541 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026541
More Details
conjugate event
Authors: Martinez-Calderon Claudia, Shiokawa Kazuo, Miyoshi Yoshizumi, Keika Kunihiro, Ozaki Mitsunori, et al.
Title: ELF/VLF wave propagation at subauroral latitudes: Conjugate observation between the ground and Van Allen Probes A
Abstract: We report simultaneous observation of ELF/VLF emissions, showing similar spectral and frequency features, between a VLF receiver at Athabasca (ATH), Canada, (L = 4.3) and Van Allen Probes A (Radiation Belt Storm Probes (RBSP) A). Using a statistical database from 1 November 2012 to 31 October 2013, we compared a total of 347 emissions observed on the ground with observations made by RBSP in the magnetosphere. On 25 February 2013, from 12:46 to 13:39 UT in the dawn sector (04–06 magnetic local time (MLT)), we observed a quasiperiodic (QP) emission centered at 4 kHz, and an accompanying short pulse lasting less than a second at 4.8 kHz in the dawn sector (04–06 MLT). RBSP A wave data showed both emissions as right-hand polarized with their Poynting vector earthward to the Northern Hemisp. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5384 - 5393 DOI: 10.1002/jgra.v121.610.1002/2015JA022264 Available at: http://doi.wiley.com/10.1002/2015JA022264
More Details
conjunction
Authors: Breneman A. W., Crew A., Sample J., Klumpar D., Johnson A., et al.
Title: Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II
Abstract: We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising‐tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have t. . .
Date: 11/2017 Publisher: Geophysical Research Letters Pages: 11,265 - 11,272 DOI: 10.1002/2017GL075001 Available at: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075001
More Details
Content analyses
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at: http://doi.wiley.com/10.1002/jaal.2014.57.issue-5http://doi.wiley.com/10.1002/jaal.258
More Details
Content literacy
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at: http://doi.wiley.com/10.1002/jaal.2014.57.issue-5http://doi.wiley.com/10.1002/jaal.258
More Details
convection
Authors: Yang Bing, Donovan Eric, Liang Jun, Ruohoniemi Michael, McWilliams Kathryn, et al.
Title: Storm-time convection dynamics viewed from optical auroras
Abstract: A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to ear. . .
Date: 10/2019 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 105088 DOI: 10.1016/j.jastp.2019.105088 Available at: https://www.sciencedirect.com/science/article/pii/S1364682619301129
More Details
Authors: Califf S., Li X, Blum L., Jaynes A., Schiller Q., et al.
Title: THEMIS measurements of quasi-static electric fields in the inner magnetosphere
Abstract: We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of stro. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020360 Available at: http://doi.wiley.com/10.1002/2014JA020360
More Details
Authors: Califf S., Li X., Zhao H., Kellerman A., Sarris T. E., et al.
Title: The role of the convection electric field in filling the slot region between the inner and outer radiation belts
Abstract: The Van Allen Probes have reported frequent flux enhancements of 100s keV electrons in the slot region, with lower energy electrons exhibiting more dynamic behavior at lower L shells. Also, in situ electric field measurements from the Combined Release and Radiation Effects Satellite, Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Van Allen Probes have provided evidence for large-scale electric fields at low L shells during active times. We study an event on 19 February 2014 where hundreds of keV electron fluxes were enhanced by orders of magnitude in the slot region and electric fields of 1–2 mV/m were observed below L = 3. Using a 2-D guiding center particle tracer and a simple large-scale convection electric field model, we demonstrate that . . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023657 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023657/full
More Details
Authors: De Pascuale S., Jordanova V K, Goldstein J, Kletzing C A, Kurth W S, et al.
Title: Simulations of Van Allen Probes Plasmaspheric Electron Density Observations
Abstract: We simulate equatorial plasmaspheric electron densities using a physics‐based model (Cold PLasma, CPL; used in the ring current‐atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E × B convection and the parameterization of geomagn. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025776 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025776
More Details
Authors: Lyons L R, Nishimura Y., Gallardo-Lacourt B., Nicolls M. J., Chen S., et al.
Title: Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts
Abstract: We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021023 Available at: http://doi.wiley.com/10.1002/2015JA021023
More Details
convection electric field
Authors: Baker Daniel N, Hoxie Vaughn, Zhao Hong, Jaynes Allison N., Kanekal Shri, et al.
Title: Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss
Abstract: In addition to clarifying morphological structures of the Earth's radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6‐year period 1 September 2. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026259 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026259
More Details
Authors: Thaller S. A., Wygant J R, Cattell C. A., Breneman A. W., Tyler E., et al.
Title: Solar rotation period driven modulations of plasmaspheric density and convective electric field in the inner magnetosphere
Abstract: This paper presents the first analysis of Van Allen Probes measurements of the cold plasma density and electric field in the inner magnetosphere to show that intervals of strong modulation at the solar rotation period occur in the locations of the outer plasmasphere and plasmapause (~0.7 RE peak‐to‐peak), in the large‐scale electric field (~0.24 mV/m peak‐to‐peak), and in the cold plasma density (~250 cm‐3 – ~70 cm‐3 peak‐to‐peak). Solar rotation modulation of the inner magnetosphere is more apparent in the declining phase of the solar cycle than near solar maximum. The periodicities in these parameters are compared to solar EUV irradiance, solar wind dawn‐dusk electric field, and Kp. The variations in the plasmapause location at the solar rotation period anti‐corre. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026365 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026365
More Details
coronal hole
Authors: Kataoka Ryuho, Shiota Daikou, Kilpua Emilia, and Keika Kunihiro
Title: Pileup accident hypothesis of magnetic storm on 17 March 2015
Abstract: We propose a “pileup accident” hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the sheath and in the ejecta was followed by a high-speed stream from a nearby coronal hole. This combination resulted in less adiabatic expansion than usual to keep the high speed, strong magnetic field, and high density within the coronal mass ejection. Second, preceding slow and high-density solar wind was piled up ahead of the coronal mass ejection just before the arrival at the Earth to further enhance its magnetic field and density. Finall. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064816 Available at: http://doi.wiley.com/10.1002/2015GL064816
More Details
coronal mass ejection
Authors: Kataoka Ryuho, Shiota Daikou, Kilpua Emilia, and Keika Kunihiro
Title: Pileup accident hypothesis of magnetic storm on 17 March 2015
Abstract: We propose a “pileup accident” hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the sheath and in the ejecta was followed by a high-speed stream from a nearby coronal hole. This combination resulted in less adiabatic expansion than usual to keep the high speed, strong magnetic field, and high density within the coronal mass ejection. Second, preceding slow and high-density solar wind was piled up ahead of the coronal mass ejection just before the arrival at the Earth to further enhance its magnetic field and density. Finall. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064816 Available at: http://doi.wiley.com/10.1002/2015GL064816
More Details
coronal mass ejections
Authors: Lugaz N., Farrugia C. J., Huang C.-L., and Spence H E
Title: Extreme geomagnetic disturbances due to shocks within CMEs
Abstract: We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth's magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large . . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064530 Available at: http://doi.wiley.com/10.1002/2015GL064530
More Details
Authors: Kilpua E. K. J., Hietala H., Turner D. L., Koskinen H. E. J., Pulkkinen T. I., et al.
Title: Unraveling the drivers of the storm time radiation belt response
Abstract: We present a new framework to study the time evolution and dynamics of the outer Van Allen belt electron fluxes. The framework is entirely based on the large-scale solar wind storm drivers and their substructures. The Van Allen Probe observations, revealing the electron flux behavior throughout the outer belt, are combined with continuous, long-term (over 1.5 solar cycles) geosynchronous orbit data set from GOES and solar wind measurements A superposed epoch analysis, where we normalize the timescales for each substructure (sheath, ejecta, and interface region) allows us to avoid smearing effects and to distinguish the electron flux evolution during various driver structures. We show that the radiation belt response is not random: The electron flux variations are determined by the combined. . .
Date: 04/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063542 Available at: http://doi.wiley.com/10.1002/2015GL063542
More Details
corotating interaction region
Authors: Kataoka Ryuho, Shiota Daikou, Kilpua Emilia, and Keika Kunihiro
Title: Pileup accident hypothesis of magnetic storm on 17 March 2015
Abstract: We propose a “pileup accident” hypothesis, based on the solar wind data analysis and magnetohydrodynamics modeling, to explain unexpectedly geoeffective solar wind structure which caused the largest magnetic storm so far during the solar cycle 24 on 17 March 2015: First, a fast coronal mass ejection with strong southward magnetic fields both in the sheath and in the ejecta was followed by a high-speed stream from a nearby coronal hole. This combination resulted in less adiabatic expansion than usual to keep the high speed, strong magnetic field, and high density within the coronal mass ejection. Second, preceding slow and high-density solar wind was piled up ahead of the coronal mass ejection just before the arrival at the Earth to further enhance its magnetic field and density. Finall. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064816 Available at: http://doi.wiley.com/10.1002/2015GL064816
More Details
corotation
Authors: Lejosne ène, Maus Stefan, and Mozer F S
Title: Model-observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere
Abstract: Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the electric drift; (2) azimuthally, the model fails to explain the full amplitude of the observed corotation lag. In the second step, ionospheric corotation was modulated in the model by thermospheric winds, as given by the latest version of the Horizontal Wind Model (HWM1. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074862 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074862/full
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Van Allen Probe measurements of the electric drift E × B/B2 at Arecibo's L = 1.4 field line coordinate
Abstract: We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E × B/B2 at one field line coordinate set to Arecibo's incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2) the equatorial electric drift displays a dependence in magnetic local time, with a pattern consistent with the mapping of the Arecibo ionosphere dynamo electric fields along equipotential magnetic field lines. The electric fields due to the ionosphere dynamo are therefore expected t. . .
Date: 07/2016 Publisher: Geophysical Research Letters Pages: 6768 - 6774 DOI: 10.1002/2016GL069875 Available at: http://doi.wiley.com/10.1002/2016GL069875
More Details
cosmic noise absorption
Authors: Kellerman A. C., Shprits Y Y, Makarevich R. A., Spanswick E., Donovan E., et al.
Title: Characterization of the energy-dependent response of riometer absorption
Abstract: Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth's ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth's magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlati. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020027 Available at: http://doi.wiley.com/10.1002/2014JA020027
More Details
cosmic radio noise absorption
Authors: Li Haimeng, Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Wang Dedong, et al.
Title: The enhancement of cosmic radio noise absorption due to hiss-driven energetic electron precipitation during substorms
Abstract: The Van-Allen probes, low-altitude NOAA satellite, MetOp satellite and riometer are used to analyze variations of precipitating energetic electron fluxes and cosmic radio noise absorption (CNA) driven by plasmaspheric hiss with respect to geomagnetic activities. The hiss-driven energetic electron precipitations (at L~4.7-5.3, MLT~8-9) are observed during geomagnetic quiet condition and substorms, respectively. We find that the CNA detected by riometers increased very little in the hiss-driven event during quiet condition on September 06, 2012. The hiss-driven enhancement of riometer was still little during the first substorm on September 30, 2012. However, the absorption detected by the riometer largely increased while the energies of the injected electrons became higher during the second . . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021113 Available at: http://doi.wiley.com/10.1002/2015JA021113
More Details
Cosmic rays
Authors: Battiston Roberto
Title: Cosmic ray physics in space: from fundamental physics to applications
Abstract: One hundred years after their discovery by Victor Hess, cosmic rays are nowadays subject of intense research from space-based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the alpha magnetic spectrometer (AMS-02) has been installed on the International Space Station, to measure with high accuracy the cosmic ray properties searching for rare events which could be an indication of the nature of dark matter or presence of nuclear antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, involving in particular Chinese and Italian scientists, to design and build a state of the art detector capable to perform high precision cosmic rays m. . .
Date: 03/2014 Publisher: Rendiconti Lincei Pages: 97 - 105 DOI: 10.1007/s12210-014-0293-1 Available at: http://link.springer.com/10.1007/s12210-014-0293-1http://link.springer.com/content/pdf/10.1007/s12210-014-0293-1
More Details
cross calibration
Authors: Rodriguez Juan V., Onsager Terrance G., Heynderickx Daniel, and Jiggens Piers T. A.
Title: Meeting Report: Solar Energetic Particle Measurements Intercalibration Workshop, 11 April 2014, Boulder, Colorado
Abstract: Following the conclusion of the 2014 Space Weather Week in Boulder, Colorado, the NOAA National Geophysical Data Center and Space Weather Prediction Center cohosted a 1 day workshop on the intercalibration of solar energetic particle (SEP) measurements. The overall purpose of this workshop was to discuss the intercalibration of SEP measurements from different instruments and different spacecraft, to foster new cooperative intercalibration efforts, and to identify a path forward for establishing a set of intercalibration guidelines. The detailed objectives of this workshop were described by Rodriguez and Onsager [2014]. Ten talks were given at the workshop (available at ftp://ftp.ngdc.noaa.gov/STP/publications/spe_intercal/), interspersed with extensive discussions. One outcome of these . . .
Date: 11/2014 Publisher: Space Weather Pages: 613 - 615 DOI: 10.1002/swe.v12.1110.1002/2014SW001134 Available at: http://doi.wiley.com/10.1002/swe.v12.11
More Details
CRRES
Authors: Ali Ashar F., Elkington Scot R, Tu Weichao, Ozeke Louis G., Chan Anthony A, et al.
Title: Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data
Abstract: We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the ∼1 mHz to ∼8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute inline image as a function of L . . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020419 Available at: http://doi.wiley.com/10.1002/2014JA020419
More Details
CubeSat
Authors: Schiller Q., Tu W., Ali A. F., Li X, Godinez H. C., et al.
Title: Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons
Abstract: The most significant unknown regarding relativistic electrons in Earth's outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13–14 January 2013 enhancement event to isolate transport,. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023093 Available at: http://doi.wiley.com/10.1002/2016JA023093
More Details
CubeSats
Authors: Blum L. W., Schiller Q., Li X, Millan R., Halford A., et al.
Title: New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation
Abstract: Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18–19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial fea. . .
Date: 11/2013 Publisher: Geophysical Research Letters Pages: 5833 - 5837 DOI: 10.1002/2013GL058546 Available at: http://doi.wiley.com/10.1002/2013GL058546
More Details
Current sheet thinning
Authors: Stephens G. K., Sitnov M I, Korth H., Tsyganenko N A, Ohtani S, et al.
Title: Global Empirical Picture of Magnetospheric Substorms Inferred From Multimission Magnetometer Data
Abstract: Magnetospheric substorms represent key explosive processes in the interaction of the Earth's magnetosphere with the solar wind, and their understanding and modeling are critical for space weather forecasting. During substorms, the magnetic field on the nightside is first stretched in the antisunward direction and then it rapidly contracts earthward bringing hot plasmas from the distant space regions into the inner magnetosphere, where they contribute to geomagnetic storms and Joule dissipation in the polar ionosphere, causing impressive splashes of aurora. Here we show for the first time that mining millions of spaceborne magnetometer data records from multiple missions allows one to reconstruct the global 3‐D picture of these stretching and dipolarization processes. Stretching results i. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025843 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025843
More Details
current systems
Authors: Andreeva Varvara A., and Tsyganenko Nikolai A.
Title: Reconstructing the magnetosphere from data using radial basis functions
Abstract: A new method is proposed to derive from data magnetospheric magnetic field configurations without any a priori assumptions on the geometry of electric currents. The approach utilizes large sets of archived satellite data and uses an advanced technique to represent the field as a sum of toroidal and poloidal parts, whose generating potentials Ψ1 and Ψ2 are expanded into series of radial basis functions (RBF) with their nodes regularly distributed over the 3D modeling domain. The method was tested by reconstructing the inner and high-latitude field within geocentric distances up to 12RE on the basis of magnetometer data of Geotail, Polar, Cluster, THEMIS, and Van Allen space probes, taken during 1995–2015. Four characteristic states of the magnetosphere before and during a disturbance ha. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022242 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA022242/full
More Details
current wedge
Authors: Kronberg E. A., Grigorenko E. E., Turner D. L., Daly P. W., Khotyaintsev Y., et al.
Title: Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event
Abstract: Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of “dispersionless” injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth's magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless injections are associated with instabilities in the plasma sheet during the growth phase of the substorm, with a dipolarization front at the onset and with magnetic flux pileup during the expansion phase. They show different spatial spread and propagation characteristics. Injection associated with the dipolarization. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023551 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023551/full
More Details
cutoff energy
Authors: Qin Murong, Hudson Mary, Kress Brian, Selesnick Richard, Engel Miles, et al.
Title: Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017
Abstract: In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse‐height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consist. . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026380 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026380
More Details
cutoff location
Authors: Qin Murong, Hudson Mary, Kress Brian, Selesnick Richard, Engel Miles, et al.
Title: Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017
Abstract: In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse‐height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consist. . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026380 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026380
More Details
cyclotron harmonic waves
Authors: Usanova M. E., Malaspina D. M., Jaynes A. N., Bruder R. J., Mann I. R., et al.
Title: Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere
Abstract: Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both the wave velocity and the Poynting vector directed almost parallel to the background magnetic field. These properties are very similar to those of electromagnetic ion cyclotron waves, which are believed to contribute to loss of ring current ions and radiation belt electro. . .
Date: 09/2016 Publisher: Geophysical Research Letters Pages: 8827 - 8834 DOI: 10.1002/grl.v43.1710.1002/2016GL070233 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070233/abstract
More Details
Cyclotron instability
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at: http://doi.wiley.com/10.1002/2015GL063906
More Details
Cyclotron resonance
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Disappearance of plasmaspheric hiss following interplanetary shock
Abstract: Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetop. . .
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063906 Available at: http://doi.wiley.com/10.1002/2015GL063906
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, et al.
Title: Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons
Abstract: Frequency distribution is a vital factor in determining the contribution of whistler-mode chorus to radiation belt electron dynamics. Chorus is usually considered to occur in the frequency range 0.1–0.8 inline image (with the equatorial electron gyrofrequency inline image). We here report an event of intense low-frequency chorus with nearly half of wave power distributed below 0.1 inline image observed by Van Allen Probe A on 27 August 2014. This emission propagated quasi-parallel to the magnetic field and exhibited hiss-like signatures most of the time. The low-frequency chorus can produce the rapid loss of low-energy (∼0.1 MeV) electrons, different from the normal chorus. For high-energy (≥0.5 MeV) electrons, the low-frequency chorus can yield comparable momentum diffusion to tha. . .
Date: 02/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL067687 Available at: http://doi.wiley.com/10.1002/2016GL067687
More Details
Authors: Zhu Hui, Su Zhenpeng, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons
Abstract: Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ~Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062964 Available at: http://doi.wiley.com/10.1002/2014GL062964
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O. V., Krasnoselskikh V., and Mozer F.S.
Title: Very Oblique Whistler Generation By Low Energy Electron Streams
Abstract: Whistler-mode chorus waves are present throughout the Earth's outer radiation belt as well as at larger distances from our planet. While the generation mechanisms of parallel lower-band chorus waves and oblique upper-band chorus waves have been identified and checked in various instances, the statistically significant presence in recent satellite observations of very oblique lower-band chorus waves near the resonance cone angle remains to be explained. Here we discuss two possible generation mechanisms for such waves. The first one is based on Landau resonance with sporadic very low energy (<4 keV) electron beams either injected from the plasmasheet or produced in situ. The second one relies on cyclotron resonance with low energy electron streams, such that their velocity distribution poss. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021135 Available at: http://doi.wiley.com/10.1002/2015JA021135
More Details
Cyclotron resonances
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., Vainchtein D. L., Mozer F S, et al.
Title: Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves
Abstract: In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth's radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic . . .
Date: 08/2015 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4927774 Available at: http://scitation.aip.org/content/aip/journal/pop/22/8/10.1063/1.4927774
More Details

Pages