Biblio

Found 909 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Authors: Miyoshi Y, Matsuda S., Kurita S., Nomura K., Keika K, et al.
Title: EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase
Abstract: Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 io. . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083024 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083024
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Wang Dedong, Li Haimeng, et al.
Title: EMIC waves covering wide L shells: MMS and Van Allen Probes observations
Abstract: During 04:45:00–08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6–9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC w. . .
Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023982 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023982/full
More Details
Authors: Blum L.W., Artemyev A., Agapitov O., Mourenas D., Boardsen S., et al.
Title: EMIC Wave‐Driven Bounce Resonance Scattering of Energetic Electrons in the Inner Magnetosphere
Abstract: While electromagnetic ion cyclotron (EMIC) waves have been long studied as a scattering mechanism for ultrarelativistic (megaelectron volt) electrons via cyclotron‐resonant interactions, these waves are also of the right frequency to resonate with the bounce motion of lower‐energy (approximately tens to hundreds of kiloelectron volts) electrons. Here we investigate the effectiveness of this bounce resonance interaction to better determine the effects of EMIC waves on subrelativistic electron populations in Earth's inner magnetosphere. Using wave and plasma parameters directly measured by the Van Allen Probes, we estimate bounce resonance diffusion coefficients for four different events, illustrative of wave and plasma parameters to be encountered in the inner magnetosphere. The range o. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026427 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026427
More Details
Authors: Denton M. H., Thomsen M F, Jordanova V K, Henderson M G, Borovsky J E, et al.
Title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
Abstract: Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied. . .
Date: 04/2015 Publisher: Space Weather DOI: 10.1002/2015SW001168 Available at: http://doi.wiley.com/10.1002/2015SW001168
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Empirical model of lower band chorus wave distribution in the outer radiation belt
Abstract: Accurate modeling of wave-particle interactions in the radiation belts requires detailed information on wave amplitudes and wave-normal angular distributions over L shells, magnetic latitudes, magnetic local times, and for various geomagnetic activity conditions. In this work, we develop a new and comprehensive parametric model of VLF chorus waves amplitudes and obliqueness in the outer radiation belt using statistics of VLF measurements performed in the chorus frequency range during 10 years (2001–2010) aboard the Cluster spacecraft. We used data from the Spatio-Temporal Analysis of Field Fluctuations-Spectrum Analyzer experiment, which spans a total frequency range from 8 Hz to 4 kHz. The statistical model is presented in the form of an analytical function of latitude and Kp (or Dst) i. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021829 Available at: http://doi.wiley.com/10.1002/2015JA021829http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021829
More Details
Authors: Zhao H., Friedel R H W, Chen Y., Reeves G D, Baker D N, et al.
Title: An empirical model of radiation belt electron pitch angle distributions based on Van Allen Probes measurements
Abstract: Based on over 4 years of Van Allen Probes measurements, an empirical model of radiation belt electron equatorial pitch angle distribution (PAD) is constructed. The model, developed by fitting electron PADs with Legendre polynomials, provides the statistical PADs as a function of L‐shell (L=1 – 6), magnetic local time (MLT), electron energy (~30 keV – 5.2 MeV), and geomagnetic activity (represented by the Dst index), and is also the first empirical PAD model in the inner belt and slot region. For MeV electrons, model results show more significant day‐night PAD asymmetry of electrons with higher energies and during disturbed times, which is caused by geomagnetic field configuration and flux radial gradient changes. Steeper PADs with higher fluxes around 90° pitch angle (PA) and lowe. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025277 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025277
More Details
Authors: Andreeva V. A., and Tsyganenko N A
Title: Empirical Modeling of the Geomagnetosphere for SIR and CME‐Driven Magnetic Storms
Abstract: During geomagnetic disturbances, the solar wind arrives in the form of characteristic sequences lasting from tens of hours to days. The most important magnetic storm drivers are the coronal mass ejections (CMEs) and the slow‐fast stream interaction regions (SIRs). Previous data‐based magnetic field models did not distinguish between these types of the solar wind driving. In the present work we retained the basic structure of the Tsyganenko and Andreeva (2015) model but fitted it to data samples corresponding to (1) SIR‐driven storms, (2) CME‐driven storms preceded with a shock ahead of the CME, and (3) CME‐driven storms without such shocks. The storm time dynamics of the model current systems has been represented using the parametrization method developed by Tsyganenko and Sitnov. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 5641 - 5662 DOI: 10.1029/2018JA026008 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026008
More Details
Authors: Zhelavskaya Irina S., Shprits Yuri Y, and ć Maria
Title: Empirical modeling of the plasmasphere dynamics using neural networks
Abstract: We propose a new empirical model for reconstructing the global dynamics of the cold plasma density distribution based only on solar wind data and geomagnetic indices. Utilizing the density database obtained using the NURD (Neural-network-based Upper hybrid Resonance Determination) algorithm for the period of October 1, 2012 - July 1, 2016, in conjunction with solar wind data and geomagnetic indices, we develop a neural network model that is capable of globally reconstructing the dynamics of the cold plasma density distribution for 2≤L≤6 and all local times. We validate and test the model by measuring its performance on independent datasets withheld from the training set and by comparing the model predicted global evolution with global images of He+ distribution in the Earth's plasmasph. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024406 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024406/full
More Details
Authors: Andreeva V. A., and Tsyganenko N A
Title: Empirical modeling of the quiet and storm-time geosynchronous magnetic field
Abstract: A dynamical empirical model of the near-geosynchronous magnetic field has been constructed, based on a recently developed RBF approach and a multi-year set of spacecraft data taken by THEMIS, Polar, Cluster, and Van Allen Probes missions including 133 geomagnetic storms in the time interval between 1996 and 2016. The model describes the field as a function of Cartesian solar-magnetic coordinates, dipole tilt angle, solar wind ram pressure, and of a set of dynamic variables representing the response of the magnetosphere to the external driving/loading during the active phase of a space weather event, followed by the internal relaxation/dissipation during the storm recovery. In terms of the disturbance level, the model's validity range extends to intense storms with peak Sym-H values down to. . .
Date: 12/2017 Publisher: Space Weather DOI: 10.1002/2017SW001684 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001684/full
More Details
Authors: Stephens G. K., Sitnov M I, Ukhorskiy A Y, Roelof E. C., Tsyganenko N A, et al.
Title: Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents
Abstract: The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A simil. . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021700 Available at: http://doi.wiley.com/10.1002/2015JA021700
More Details
Authors: Pich Maria de Soria-S, Jun Insoo, and Evans Robin
Title: Empirical radiation belt models: Comparison with in-situ data and implications for environment definition
Abstract: The empirical AP8/AE8 model has been the de-facto Earth's radiation belts engineering reference for decades. The need from the community for a better model incubated the development of AP9/AE9/SPM, which addresses several shortcomings of the old model. We provide additional validation of AP9/AE9 by comparing in-situ electron and proton data from Jason-2, POES, and the Van Allen Probes spacecraft with the 5th, 50th, and 95th percentiles from AE9/AP9 and with the model outputs from AE8/AP8. The relatively short duration of Van Allen Probes and Jason-2 missions means that their measurements are most certainly the result of specific climatological conditions. In LEO, the Jason-2 proton flux is better reproduced by AP8 compared to AP9, while the POES electron data are well enveloped by AE9 5th . . .
Date: 08/2017 Publisher: Space Weather DOI: 10.1002/2017SW001612 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001612/full
More Details
Authors: O'Brien T P, Claudepierre S G, Blake J B, Fennell J. F., Clemmons J. H., et al.
Title: An empirically observed pitch-angle diffusion eigenmode in the Earth's electron belt near L *  = 5.0
Abstract: Using data from NASA's Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that e. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 251 - 258 DOI: 10.1002/2013GL058713 Available at: http://doi.wiley.com/10.1002/2013GL058713
More Details
Authors: Bin Kang Suk-, Fok Mei-Ching, Komar Colin, Glocer Alex, Li Wen, et al.
Title: An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013
Abstract: We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May – 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs duri. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024879 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024879/full
More Details
Authors: Turner D. L., Claudepierre S G, Fennell J. F., O'Brien T P, Blake J B, et al.
Title: Energetic electron injections deep into the inner magnetosphere associated with substorm activity
Abstract: From a survey of the first nightside season of NASA's Van Allen Probes mission (Dec/2012 – Sep/2013), 47 energetic (10s to 100s of keV) electron injection events were found at L-shells ≤ 4, all of which are deeper than any previously reported substorm-related injections. Preliminary details from these events are presented, including how: all occurred shortly after dipolarization signatures and injections were observed at higher L-shells; the deepest observed injection was at L~2.5; and, surprisingly, L≤4 injections are limited in energy to ≤250 keV. We present a detailed case study of one example event revealing that the injection of electrons down to L~3.5 was different from injections observed at higher L and likely resulted from drift resonance with a fast magnetosonic wave in t. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063225 Available at: http://doi.wiley.com/10.1002/2015GL063225
More Details
Authors: Lejosne ène, Kunduri B. S. R., Mozer F S, and Turner D. L.
Title: Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop
Abstract: It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large‐scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F‐18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, . . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077969 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077969
More Details
Authors: Oyama S., Kero A., Rodger C. J., Clilverd M A, Miyoshi Y, et al.
Title: Energetic electron precipitation and auroral morphology at the substorm recovery phase
Abstract: It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based m. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023484/full
More Details
Authors: Miyoshi Y, Oyama S., Saito S., Kurita S., Fujiwara H., et al.
Title: Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations
Abstract: Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave–particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energ. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020690 Available at: http://doi.wiley.com/10.1002/2014JA020690
More Details
Authors: Capannolo L., Li W, Ma Q, Shen X.‐C., Zhang X.‐J., et al.
Title: Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity
Abstract: Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magn. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026291
More Details
Authors: Meredith Nigel P, Horne Richard B, Glauert Sarah A, Thorne Richard M, Summers D., et al.
Title: Energetic outer zone electron loss timescales during low geomagnetic activity
Abstract: Following enhanced magnetic activity the fluxes of energetic electrons in the Earth's outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 ≤ L ≤ 5.0 occurs during quiet periods (Kp < 3−) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons. The intervals of decay are associated with large average values of the ratio fpe/fce (>7), indicating that the decay takes place in the plasmasphere. We compute loss timescales for pitch-angle scattering by plasmaspheric hiss using the PADIE code with wave properties based on C. . .
Date: 05/2006 Publisher: Journal of Geophysical Research DOI: 10.1029/2005JA011516 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2005JA011516/abstract
More Details
Authors: Mauk B H, Blake J B, Baker D N, Clemmons J. H., Reeves G D, et al.
Title: The Energetic Particle Detector (EPD) Investigation and the Energetic Ion Spectrometer (EIS) for the Magnetospheric Multiscale (MMS) Mission
Abstract: The Energetic Particle Detector (EPD) Investigation is one of 5 fields-and-particles investigations on the Magnetospheric Multiscale (MMS) mission. MMS comprises 4 spacecraft flying in close formation in highly elliptical, near-Earth-equatorial orbits targeting understanding of the fundamental physics of the important physical process called magnetic reconnection using Earth’s magnetosphere as a plasma laboratory. EPD comprises two sensor types, the Energetic Ion Spectrometer (EIS) with one instrument on each of the 4 spacecraft, and the Fly’s Eye Energetic Particle Spectrometer (FEEPS) with 2 instruments on each of the 4 spacecraft. EIS measures energetic ion energy, angle and elemental compositional distributions from a required low energy limit of 20 keV for protons and 45 keV for o. . .
Date: 06/2014 Publisher: Space Science Reviews DOI: 10.1007/s11214-014-0055-5 Available at: http://link.springer.com/10.1007/s11214-014-0055-5http://link.springer.com/content/pdf/10.1007/s11214-014-0055-5
More Details
Authors: Summers Danny, Shi Run, Engebretson Mark J, Oksavik Kjellmar, Manweiler Jerry W., et al.
Title: Energetic proton spectra measured by the Van Allen Probes
Abstract: We test the hypothesis that pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves can limit ring current proton fluxes. For two chosen magnetic storms, during March 17-20, 2013 and March 17-20, 2015, we measure proton energy spectra in the region 3 ≤ L ≤ 6 using the RBSPICE B instrument on the Van Allen Probes. The most intense proton spectra are observed to occur during the recovery periods of the respective storms. Using proton precipitation data from the POES (NOAA and MetOp) spacecraft, we deduce that EMIC wave action was prevalent at the times and L-shell locations of the most intense proton spectra. We calculate limiting ring current proton energy spectra from recently developed theory. Comparisons between the observed proton energy spectra and the theoreti. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024484/full
More Details
Authors: Brito T, Woodger L, Hudson M K, and MILLAN R
Title: Energetic radiation belt electron precipitation showing ULF modulation
Abstract: 1] The energization and loss processes for energetic radiation belt electrons are not yet well understood. Ultra Low Frequency (ULF) waves have been correlated with both enhancement in outer zone radiation belt electron flux and modulation of precipitation loss to the atmosphere. This study considers the effects of ULF waves in the Pc-4 to Pc-5 period range (45 s–600 s) on electron loss to the atmosphere on a time scale of several minutes. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these ∼MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive elec. . .
Date: 11/2012 Publisher: Geophysical Research Letters Pages: 28 DOI: 10.1029/2012GL053790 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2012GL053790/full
More Details
Authors: Drozdov A. Y., Shprits Y Y, Orlova K.G., Kellerman A. C., Subbotin D. A., et al.
Title: Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements
Abstract: In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an . . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020637 Available at: http://doi.wiley.com/10.1002/2014JA020637
More Details
Authors: Sandhu J. K., Rae I. J., Freeman M. P., Forsyth C., Gkioulidou M., et al.
Title: Energisation of the ring current by substorms
Abstract: The substorm process releases large amounts of energy into the magnetospheric system, although where the energy is transferred to and how it is partitioned remains an open question. In this study, we address whether the substorm process contributes a significant amount of energy to the ring current. The ring current is a highly variable region, and understanding the energisation processes provides valuable insight into how substorm ‐ ring current coupling may contribute to the generation of storm conditions and provide a source of energy for wave driving. In order to quantify the energy input into the ring current during the substorm process, we analyse RBSPICE and HOPE ion flux measurements for H+, O+, and He+. The energy content of the ring current is estimated and binned spatially for. . .
Date: 09/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025766 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025766
More Details
Authors: Chen Yue, Reeves Geoffrey D, and Friedel Reiner H W
Title: The energization of relativistic electrons in the outer Van Allen radiation belt
Abstract: The origin and dynamics of the Van Allen radiation belts is one of the longest-standing questions of the space age, and one that is increasingly important for space applications as satellite systems become more sophisticated, smaller and more susceptible to radiation effects. The precise mechanism by which the Earth's magnetosphere is able to accelerate electrons from thermal to ultrarelativistic energies (Edouble greater than0.5 MeV) has been particularly difficult to definitively resolve. The traditional explanation is that large-scale, fluctuating electric and magnetic fields energize particles through radial diffusion1. More recent theories2, 3 and observations4, 5 have suggested that gyro-resonant wave–particle interactions may be comparable to or more important than radial diffusio. . .
Date: 09/2007 Publisher: Nature Physics Pages: 614 - 617 DOI: 10.1038/nphys655 Available at: http://www.nature.com/nphys/journal/v3/n9/full/nphys655.html
More Details
Authors: O’Brien T P, Lorentzen K. R., Mann I. R., Meredith N. P., Blake J. B., et al.
Title: Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration
Abstract: We examine signatures of two types of waves that may be involved in the acceleration of energetic electrons in Earth's outer radiation belts. We have compiled a database of ULF wave power from SAMNET and IMAGE ground magnetometer stations for 1987–2001. Long-duration, comprehensive, in situ VLF/ELF chorus wave observations are not available, so we infer chorus wave activity from low-altitude SAMPEX observations of MeV electron microbursts for 1996–2001 since microbursts are thought to be caused by interactions between chorus and trapped electrons. We compare the ULF and microburst observations to in situ trapped electrons observed by high-altitude satellites from 1989–2001. We find that electron acceleration at low L shells is closely associated with both ULF activity and MeV microbu. . .
Date: 08/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2002JA009784 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002JA009784/abstract
More Details
Authors: Reeves Geoffrey D, Friedel Reiner H W, Larsen Brian A., Skoug Ruth M., Funsten Herbert O., et al.
Title: Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Abstract: We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energie. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021569 Available at: http://doi.wiley.com/10.1002/2015JA021569http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021569
More Details
Authors: Turner D. L., Fennell J. F., Blake J B, Clemmons J. H., Mauk B H, et al.
Title: Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission
Abstract: We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increa. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7785 - 7794 DOI: 10.1002/2016GL069691 Available at: http://doi.wiley.com/10.1002/2016GL069691
More Details
Authors: Goldsten J O, Maurer R H, Peplowski P N, Holmes-Siedle A G, Herrmann C C, et al.
Title: The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission
Abstract: An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA’s Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ∼0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-012-9917-x Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9917-x
More Details
Authors: Li Haimeng, Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Wang Dedong, et al.
Title: The enhancement of cosmic radio noise absorption due to hiss-driven energetic electron precipitation during substorms
Abstract: The Van-Allen probes, low-altitude NOAA satellite, MetOp satellite and riometer are used to analyze variations of precipitating energetic electron fluxes and cosmic radio noise absorption (CNA) driven by plasmaspheric hiss with respect to geomagnetic activities. The hiss-driven energetic electron precipitations (at L~4.7-5.3, MLT~8-9) are observed during geomagnetic quiet condition and substorms, respectively. We find that the CNA detected by riometers increased very little in the hiss-driven event during quiet condition on September 06, 2012. The hiss-driven enhancement of riometer was still little during the first substorm on September 30, 2012. However, the absorption detected by the riometer largely increased while the energies of the injected electrons became higher during the second . . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021113 Available at: http://doi.wiley.com/10.1002/2015JA021113
More Details
Authors: Goldstein J, De Pascuale S., and Kurth W S
Title: Epoch‐Based Model for Stormtime Plasmapause Location
Abstract: The output of a plasmapause test particle (PTP) code is used to formulate a new epoch‐based plasmapause model. The PTP simulation is run for an ensemble of 60 storms spanning 3 September 2012 to 28 September 2017 and having peak Dst of −60 nT or less, yielding over 7 million model plasmapause locations. Events are automatically identified and epoch times calculated relative to the respective storm peaks. Epoch analysis of the simulated plasmapause is demonstrated to be an effective method to reveal the dynamical phases of plume formation and evolution. The plasmapause radius is found to be strongly correlated with positive solar wind electric field. The epoch‐binned PTP data are used to create the first analytical model of the plasmapause that explicitly includes plumes. We obtain th. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025996 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025996
More Details
Authors: Min Kyungguk, Boardsen Scott A., Denton Richard E, and Liu Kaijun
Title: Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction
Abstract: Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2‐D particle‐in‐cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self‐consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctua. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026037 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026037
More Details
Authors: Němec F., Santolik O, Hrbáčková Z., Pickett J. S., and Cornilleau-Wehrlin N.
Title: Equatorial noise emissions with quasiperiodic modulation of wave intensity
Abstract: Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5% of events. We. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020816 Available at: http://doi.wiley.com/10.1002/2014JA020816
More Details
Authors: ěmec F., ík O., Boardsen S. A., Hospodarsky G B, and Kurth W S
Title: Equatorial noise with quasiperiodic modulation: Multipoint observations by the Van Allen Probes spacecraft
Abstract: Electromagnetic wave measurements performed by the two Van Allen Probes spacecraft are used to analyze equatorial noise emissions with a quasiperiodic modulation of the wave intensity. These waves are confined to the vicinity of the geomagnetic equator, and they occur primarily on the dayside. In situ plasma number density measurements are used to evaluate density variations related to the wave occurrence. It is shown that the events are sometimes effectively confined to low density regions, being observed at successive satellite passes over a time duration as long as one hour. The events typically occur outside the plasmasphere, and they are often cease to exist just at the plasmapause. The analysis of the spatial separations of the spacecraft at the times when the events were observed si. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025482 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025482
More Details
Authors: Lyons Lawrence R, and Thorne Richard Mansergh
Title: Equilibrium Structure of Radiation Belt Electrons
Abstract: The detailed quiet time structure of energetic electrons in the earth's radiation belts is explained on the basis of a balance between pitch angle scattering loss and inward radial diffusion from an average outer zone source. Losses are attributed to a combination of classical Coulomb scattering at low L and whistler mode turbulent pitch angle diffusion throughout the outer plasmasphere. Radial diffusion is driven by substorm associated fluctuations of the magnetospheric convection electric field.
Date: 05/1973 Publisher: Journal of Geophysical Research Pages: 2142 - 2149 DOI: 10.1029/JA078i013p02142 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA078i013p02142/abstract
More Details
Authors: Ozaki Mitsunori, Yagitani Satoshi, Takahashi Ken, Imachi Tomohiko, Koji Hiroki, et al.
Title: Equivalent Circuit Model for the Electric Field Sensitivity of a Magnetic Search Coil of Space Plasma
Abstract: Magnetic search coils (MSCs) are sensitive to both magnetic and electric fields, but detecting electric fields is unnecessary for magnetic observations of plasma waves. However, it is important to evaluate both sensitivities for different geometries and electrostatic shields to avoid electric field pickup. An equivalent circuit model for the electric field sensitivity of an MSC in a collisionless isotropic cold plasma is developed here using electrical coupling through a sheath capacitance. That sensitivity is defined by a relationship between the MSC impedance and the sheath capacitance. To confirm the validity of the circuit model, the sensitivity to an electric field is measured by imposing an external electric field using charged parallel metallic plates in laboratory experiments. The . . .
Date: 10/2014 Publisher: IEEE Sensors Journal Pages: 1 - 1 DOI: 10.1109/JSEN.2014.2365495 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6937067
More Details
Authors: Sarris T. E.
Title: Estimates of the power per mode number of broadband ULF waves at geosynchronous orbit
Abstract: In studies of radial diffusion processes in the magnetosphere it is well known that ultralow frequency (ULF) waves of frequency mωd can resonantly interact with particles of drift frequency ωd, where m is the waves' azimuthal mode number. Due to difficulties in estimating m, an oversimplifying assumption is often made in simulations, namely that all ULF wave power is located at a single mode number. In this paper a technique is presented for extracting information on the distribution of ULF power in a range of azimuthal mode numbers. As a first step, the cross power and phase differences between time series from azimuthally aligned magnetometers are calculated. Subsequently, through integrating the ULF power at particular ranges of phase differences that correspond to particular mode num. . .
Date: 07/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 5539 - 5550 DOI: 10.1002/2013JA019238 Available at: http://doi.wiley.com/10.1002/2013JA019238
More Details
Authors: Bin Kang Suk-, Min Kyoung-Wook, Fok Mei-Ching, Hwang Junga, and Choi Cheong-Rim
Title: Estimation of pitch angle diffusion rates and precipitation time scales of electrons due to EMIC waves in a realistic field model
Abstract: Electromagnetic ion cyclotron (EMIC) waves are closely related to precipitating loss of relativistic electrons in the radiation belts, and thereby, a model of the radiation belts requires inclusion of the pitch angle diffusion caused by EMIC waves. We estimated the pitch angle diffusion rates and the corresponding precipitation time scales caused by H and He band EMIC waves using the Tsyganenko 04 (T04) magnetic field model at their probable regions in terms of geomagnetic conditions. The results correspond to enhanced pitch angle diffusion rates and reduced precipitation time scales compared to those based on the dipole model, up to several orders of magnitude for storm times. While both the plasma density and the magnetic field strength varied in these calculations, the reduction of the . . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8529 - 8546 DOI: 10.1002/2014JA020644 Available at: http://doi.wiley.com/10.1002/2014JA020644http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2014JA020644
More Details
Authors: Juhász Lilla, Omura Yoshiharu, Lichtenberger János, and Friedel Reinhard H.
Title: Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region
Abstract: In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground‐based data in order to derive the lower‐energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026337 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026337
More Details
Authors: Albert J M
Title: Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma
Abstract: Quasi-linear velocity-space diffusion coefficients due to L-mode electromagnetic ion cyclotron (EMIC) waves are considered in a multispecies plasma. It is shown, with slight approximations to exact cold plasma theory, that within EMIC pass bands the index of refraction is a monotonically increasing function of frequency. Analytical criteria are then derived which identify ranges of latitude, wavenormal angle, and resonance number consistent with resonance in a prescribed wave population. This leads to computational techniques which allow very efficient calculation of the diffusion coefficients, along the lines previously developed for whistler and ion cyclotron waves in an electron-proton plasma. The techniques are applied to radiation belt electrons at L = 4, for EMIC waves in the hydroge. . .
Date: 06/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2002JA009792 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002JA009792/abstract
More Details
Authors: Albert J M
Title: Evaluation of quasi-linear diffusion coefficients for whistler mode waves in a plasma with arbitrary density ratio
Abstract: Techniques are presented for efficiently evaluating quasi-linear diffusion coefficients for whistler mode waves propagating according to the full cold plasma index of refraction. In particular, the density ratio ωpe/Ωe can be small, which favors energy diffusion. This generalizes an approach, previously used for high-density hiss and electromagnetic ion cyclotron waves, of identifying (and omitting) ranges of wavenormal angle θ that are incompatible with cyclotron resonant frequencies ω occurring between sharp cutoffs of the modeled wave frequency spectrum. This requires a detailed analysis of the maximum and minimum values of the refractive index as a function of ω and θ, as has previously been performed in the high-density approximation. Sample calculations show the effect of low-d. . .
Date: 03/2005 Publisher: Journal of Geophysical Research DOI: 10.1029/2004JA010844 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2004JA010844/abstract
More Details
Authors: Zhu Hui, Shprits Yuri Y, Chen Lunjin, Liu Xu, and Kellerman Adam C.
Title: An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements
Abstract: Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch‐angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in‐phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth . . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025023 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025023
More Details
Authors: Tu Weichao, Cunningham G. S., Chen Y., Morley S. K., Reeves G D, et al.
Title: Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes
Abstract: The DREAM3D diffusion model is applied to Van Allen Probes observations of the fast dropout and strong enhancement of MeV electrons during the October 2012 “double-dip” storm. We show that in order to explain the very different behavior in the two “dips,” diffusion in all three dimensions (energy, pitch angle, and L*) coupled with data-driven, event-specific inputs, and boundary conditions is required. Specifically, we find that outward radial diffusion to the solar wind-driven magnetopause, an event-specific chorus wave model, and a dynamic lower-energy seed population are critical for modeling the dynamics. In contrast, models that include only a subset of processes, use statistical wave amplitudes, or rely on inward radial diffusion of a seed population, perform poorly. The resu. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1359 - 1366 DOI: 10.1002/2013GL058819 Available at: http://doi.wiley.com/10.1002/2013GL058819
More Details
Authors: Meredith Nigel P, Cain Michelle, Horne Richard B., Thorne Richard M., Summers D., et al.
Title: Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods
Abstract: We perform a survey of the plasma wave and particle data from the CRRES satellite during 26 geomagnetically disturbed periods to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by Doppler-shifted cyclotron resonant interactions with whistler mode chorus. Relativistic electron flux enhancements associated with moderate or strong storms may be seen over the whole outer zone (3 < L < 7), typically peaking in the range 4 < L < 5, whereas those associated with weak storms and intervals of prolonged substorm activity lacking a magnetic storm signature (PSALMSS) are typically observed further out in the regions 4 < L < 7 and 4.5 < L < 7, respectively. The most significant relativistic electron flux enhancements are seen outside of th. . .
Date: 06/2003 Publisher: Journal of Geophysical Research DOI: 10.1029/2002JA009764 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2002JA009764/abstract
More Details
Authors: Dai Lei, Wygant John R., Cattell Cynthia A., Thaller Scott, Kersten Kris, et al.
Title: Evidence for injection of relativistic electrons into the Earth's outer radiation belt via intense substorm electric fields
Abstract: Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic ‘killer’ electrons (≥MeV) in addition to 10–100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1133 - 1141 DOI: 10.1002/2014GL059228 Available at: http://doi.wiley.com/10.1002/2014GL059228
More Details
Authors: Shumko Mykhaylo, Turner Drew L, O'Brien T P, Claudepierre Seth G., Sample John, et al.
Title: Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt
Abstract: We present the first evidence of electron microbursts observed near the equatorial plane in Earth's outer radiation belt. We observed the microbursts on March 31st, 2017 with the Magnetic Electron Ion Spectrometer and RBSP Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29‐92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150‐500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they were recently scattered near the spacecraft. We have applied the relativistic theory of wave‐particle resonant diffusion to the calculated phase space density, revealing that the observed transport of microburst electrons is not consistent with the hypothesized quasi‐linear ap. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078451 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078451
More Details
Authors: Li W, Mourenas D., Artemyev A., Agapitov O., Bortnik J, et al.
Title: Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves
Abstract: Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30–100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This . . .
Date: 08/2014 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2014GL061260 Available at: http://doi.wiley.com/10.1002/2014GL061260
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm
Abstract: A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, whic. . .
Date: 06/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50627 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50627/full
More Details
Authors: Bingley L., Angelopoulos V, Sibeck D., Zhang X., and Halford A.
Title: The Evolution of a Pitch‐Angle “Bite‐Out” Scattering Signature Caused by EMIC Wave Activity: A Case Study
Abstract: Electromagnetic ion cyclotron (EMIC) waves are understood to be one of the dominant drivers of relativistic electron loss from Earth's radiation belts. Theory predicts that the associated gyroresonant wave‐particle interaction results in a distinct energy‐dependent “bite‐out” signature in the normalized flux distribution of electrons as they are scattered into the loss cone. We identify such signatures along with the responsible EMIC waves captured in situ by the Van Allen Probes on 15–16 February 2017. Using the cold plasma approximation, we predict the pitch‐angle cutoffs for the scattering signature for the captured EMIC wave and find it in good agreement with the observed electron bite‐out scattering signature. Employing the close conjunction between the Van Allen Probe. . .
Date: 06/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026292 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026292
More Details
Authors: Zhou Qinghua, Xiao Fuliang, Yang Chang, Liu Si, He Yihua, et al.
Title: Evolution of chorus emissions into plasmaspheric hiss observed by Van Allen Probes
Abstract: The two classes of whistler mode waves (chorus and hiss) play different roles in the dynamics of radiation belt energetic electrons. Chorus can efficiently accelerate energetic electrons, and hiss is responsible for the loss of energetic electrons. Previous studies have proposed that chorus is the source of plasmaspheric hiss, but this still requires an observational confirmation because the previously observed chorus and hiss emissions were not in the same frequency range in the same time. Here we report simultaneous observations form Van Allen Probes that chorus and hiss emissions occurred in the same range ∼300–1500 Hz with the peak wave power density about 10−5 nT2/Hz during a weak storm on 3 July 2014. Chorus emissions propagate in a broad region outside the plasmapause. Meanwhi. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 4518 - 4529 DOI: 10.1002/2016JA022366 Available at: http://doi.wiley.com/10.1002/2016JA022366
More Details

Pages