Biblio

Found 640 results
Filters: Keyword is Van Allen Probes  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
O
Authors: Oyama S., Kero A., Rodger C. J., Clilverd M A, Miyoshi Y, et al.
Title: Energetic electron precipitation and auroral morphology at the substorm recovery phase
Abstract: It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based m. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023484/full
More Details
Authors: Osmane Adnane, III Lynn B. Wilson, Blum Lauren, and Pulkkinen Tuija I.
Title: On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts
Abstract: Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave–particle interactions. We show that wave parameters, consistent with large-amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (>1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles ${\theta }_{{kB}}\gt 50^\circ $ and phase-speeds ${v}_{{\rm{\Phi }}}\geqslant c/9$. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution functio. . .
Date: 01/2016 Publisher: The Astrophysical Journal Pages: 51 DOI: 10.3847/0004-637X/816/2/51 Available at: http://stacks.iop.org/0004-637X/816/i=2/a=51?key=crossref.70d237eeae19ada88cf791dd9ba676be
More Details
Authors: Orlova Ksenia, Shprits Yuri, and Spasojevic Maria
Title: New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements
Abstract: Energetic electron observations in Earth's radiation belts are typically sparse and multi-point studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross-calibration into two parts – one that removes any spectral assumptions from the CXD flux calculation, and one that compares the energy spectra – we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra we use a combination of four distributions that, together. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021878 Available at: http://doi.wiley.com/10.1002/2015JA021878
More Details
Authors: Omura Yoshiharu, Hsieh Yi‐Kai, Foster John C., Erickson Philip J., Kletzing Craig A., et al.
Title: Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler‐Mode Chorus Emissions
Abstract: Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler‐mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler‐mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026374 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026374
More Details
Authors: Olifer L., Mann I. R., Morley S. K., Ozeke L. G., and Choi D.
Title: On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction
Abstract: We present observations of very fast radiation belt loss as resolved using high‐time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The timescale of these losses is revealed to be as short as ∼0.5 − 2 hours during intense magnetic storms, with some storms demonstrating almost total loss on these timescales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the September 2014 storm shows fast extinction but no recovery for around two weeks. By contrast, the moderate September 2012 storm which generated a three radiation belt morphology shows more gradual loss. We compute the last closed drift shell (LCDS) for each of these . . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025190 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025190
More Details
Authors: Oimatsu S., é M., Takahashi K., Yamamoto K., Keika K, et al.
Title: Van Allen Probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave
Abstract: A poloidal Pc4 wave and proton flux oscillations are observed in the inner magnetosphere on the dayside near the magnetic equator by the Van Allen Probes spacecraft on 2 March 2014. The flux oscillations are observed in the energy range of 67.0 keV to 268.8 keV with the same frequency of the poloidal Pc4 wave. We find pitch angle and energy dispersion in the phase difference between the poloidal magnetic field and the proton flux oscillations, which are features of drift‐bounce resonance. We estimate the resonance energy to be ~120 keV for pitch angle (α) of 30° or 150°, and 170–180 keV for α = 50° or 130°. To examine the direction of energy flow between protons and the wave, we calculate the sign of the gradient of proton phase space density (df/dW) on both the inbound and outbo. . .
Date: 04/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025087 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025087
More Details
Authors: Ohtani S, Motoba T., Gkioulidou M., Takahashi K., and Singer H J
Title: Spatial Development of the Dipolarization Region in the Inner Magnetosphere
Abstract: The present study examines dipolarization events observed by the Van Allen Probes within 5.8 RE from Earth. It is found that the probability of occurrence is significantly higher in the dusk‐to‐midnight sector than in the midnight‐to‐dawn sector, and it deceases sharply earthward. A comparison with observations made at nearby satellites shows that dipolarization signatures are often highly correlated (c.c. > 0.8) within 1 hr in MLT and 1 RE in RXY, and the dipolarization region expands earthward and westward in the dusk‐to‐midnight sector. The westward expansion velocity is estimated at 0.4 hr (in MLT) per minute, or 60 km/s, which is consistent with the previously reported result for geosynchronous dipolarization. The earthward expansion is apparently less systematic than the . . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025443 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025443
More Details
Authors: O'Brien T P, Claudepierre S G, Guild T B, Fennell J. F., Turner D. L., et al.
Title: Inner zone and slot electron radial diffusion revisited
Abstract: Using recent data from NASA's Van Allen Probes, we estimate the quiet time radial diffusion coefficients for electrons in the inner radiation belt (L < 3) with energies from ~50 to 750 keV. The observations are consistent with dynamics dominated by pitch angle scattering and radial diffusion. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate phase space density over pitch angle to obtain a “bundle content” that is invariant to pitch angle scattering, except for atmospheric loss. We estimate the effective radial diffusion coefficient from the temporal and radial variation of the bundle content. We show that our diffusion coefficients agree well with previously determined values obtained in the 1960s and 1970s and follow the form one . . .
Date: 07/2016 Publisher: Geophysical Research Letters Pages: 7301 - 7310 DOI: 10.1002/2016GL069749 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL069749/full
More Details
Authors: O'Brien T.P., Claudepierre S.G., Looper M.D., Blake J.B., Fennell J.F., et al.
Title: On the use of drift echoes to characterize on-orbit sensor discrepancies
Abstract: We describe a method for using drift echo signatures in on-orbit data to resolve discrepancies between different measurements of particle flux. The drift period has a well-defined energy dependence, which gives rise to time dispersion of the echoes. The dispersion can then be used to determine the effective energy for one or more channels given each channel's drift period and the known energy for a reference channel. We demonstrate this technique on multiple instruments from the Van Allen probes mission. Drift echoes are only easily observed at high energies (100s keV to multiple MeV), where several drift periods occur before the observing satellite has moved on or the global magnetic conditions have changed. We describe a first-order correction for spacecraft motion. The drift echo techni. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020859 Available at: http://doi.wiley.com/10.1002/2014JA020859
More Details
Authors: O'Brien T P, Claudepierre S G, Blake J B, Fennell J. F., Clemmons J. H., et al.
Title: An empirically observed pitch-angle diffusion eigenmode in the Earth's electron belt near L *  = 5.0
Abstract: Using data from NASA's Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that e. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 251 - 258 DOI: 10.1002/2013GL058713 Available at: http://doi.wiley.com/10.1002/2013GL058713
More Details
Authors: O'Brien T P, Mazur J E, and Looper M D
Title: Solar Energetic Proton Access to the Magnetosphere During the 10–14 September 2017 Particle Event
Abstract: We explore the penetration of >60 MeV protons into the magnetosphere during the 10–14 September 2017 solar energetic particle event. Solar energetic particles can cause single event effects and total dose degradation in spacecraft electronics. Therefore, it is important for satellite anomaly analysis to understand how deep into the magnetosphere these particles penetrate. Whereas most studies of geomagnetic cutoffs use low‐altitude data, we use data from the Relativistic Proton Spectrometer on National Aeronautics and Space Administration's Van Allen Probes, which is in a high‐altitude, elliptical orbit. We determine how the penetration depends on particle energy, location, and direction of incidence. We evaluate multiple published models of the geomagnetic cutoff to determine how we. . .
Date: 08/2018 Publisher: Space Weather DOI: 10.1029/2018SW001960 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW001960
More Details
N
Authors: Nosé M., Oimatsu S., Keika K, Kletzing C A, Kurth W S, et al.
Title: Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations
Abstract: We study the formation process of an oxygen torus during the 12–15 November 2012 magnetic storm, using the magnetic field and plasma wave data obtained by Van Allen Probes. We estimate the local plasma mass density (ρL) and the local electron number density (neL) from the resonant frequencies of standing Alfvén waves and the upper hybrid resonance band. The average ion mass (M) can be calculated by M ∼ ρL/neL under the assumption of quasi-neutrality of plasma. During the storm recovery phase, both Probe A and Probe B observe the oxygen torus at L = 3.0–4.0 and L = 3.7–4.5, respectively, on the morning side. The oxygen torus has M = 4.5–8 amu and extends around the plasmapause that is identified at L∼3.2–3.9. We find that during the initial phase, M is 4–7 amu throughout . . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020593 Available at: http://doi.wiley.com/10.1002/2014JA020593
More Details
Authors: Noh Sung-Jun, Lee Dae-Young, Choi Cheong-Rim, Kim Hyomin, and Skoug Ruth
Title: Test of Ion Cyclotron Resonance Instability Using Proton Distributions Obtained From Van Allen Probe-A Observations
Abstract: Anisotropic velocity distributions of protons have long been considered as free energy sources for exciting electromagnetic ion cyclotron (EMIC) waves in the Earth's magnetosphere. Here we rigorously calculated the proton anisotropy parameter using proton data obtained from Van Allen Probe‐A observations. The calculations are performed for times during EMIC wave events (distinguishing the times immediately after and before EMIC wave onsets) and for times exhibiting no EMIC waves. We find that the anisotropy values are often larger immediately after EMIC wave onsets than the times just before EMIC wave onsets and the non‐EMIC wave times. The increase in anisotropy immediately after the EMIC wave onsets is rather small but discernible, such that the average increase is by ~15% relative t. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025385 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025385
More Details
Authors: Nishi Katsuki, Shiokawa Kazuo, and Spence Harlan
Title: Magnetospheric source region of auroral finger-like structures observed by the RBSP-A satellite
Abstract: Auroral finger‐like structures appear equatorward of the auroral oval in the diffuse auroral region and contribute to the auroral fragmentation into patches. A previous report of the first conjugate observation of auroral finger‐like structures using a THEMIS GBO camera and the THEMIS‐E satellite at a radial distance of ∼8 RE showed anti‐phase oscillations of magnetic and plasma pressures in the dawnside plasma sheet. In the present study, we report another simultaneous observation of auroral finger‐like structures at Gillam, Canada at ∼0900 UT (0230 magnetic local time) on November 14, 2014 with the RBSP satellites at 5.8 RE in the inner magnetosphere. From this simultaneous observation event, we obtained the following observations. (1) Auroral finger‐like structures devel. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025480 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025480
More Details
Authors: Ni Binbin, Li Wen, Thorne Richard M, Bortnik Jacob, Ma Qianli, et al.
Title: Resonant scattering of energetic electrons by unusual low-frequency hiss
Abstract: We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100–2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20–200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50–200 keV electrons and produces more pronounced pancake distributions of ~50–100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50–400 keV electrons than normal hiss, and should be carefully incorpora. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1854 - 1861 DOI: 10.1002/2014GL059389 Available at: http://doi.wiley.com/10.1002/2014GL059389
More Details
Authors: Ni Binbin, Bortnik Jacob, Thorne Richard M, Ma Qianli, and Chen Lunjin
Title: Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss
Abstract: We perform a comprehensive analysis to evaluate hiss-induced scattering effect on the pitch angle evolution and associated decay processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique hiss component is negligible. Quasi-parallel approximation is good for evaluation of hiss-driven electron scattering rates ≤ 2 MeV. However, realistic wave propagation angles as a function of latitude must be considered to accurately quantify hiss scattering rates above 2 MeV, and ambient plasma density is also a critical parameter. While the first-order cyclotron and the Landau resonances are dominant for hiss scattering < 2 MeV electrons, higher-order resonances become important and even dominant at intermediate pitch angles for ultrarelativistic (≥. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7740 - 7751 DOI: 10.1002/2013JA019260 Available at: http://doi.wiley.com/10.1002/2013JA019260
More Details
Authors: Ni Binbin, Zou Zhengyang, Li Xinlin, Bortnik Jacob, Xie Lun, et al.
Title: Occurrence Characteristics of Outer Zone Relativistic Electron Butterfly Distribution: A Survey of Van Allen Probes REPT Measurements
Abstract: Using Van Allen Probes REPT pitch angle resolved electron flux data from September 2012 to March 2015, we investigate in detail the global occurrence pattern of equatorial (|λ| ≤ 3°) butterfly distribution of outer zone relativistic electrons and its potential correlation with the solar wind dynamic pressure. The statistical results demonstrate that these butterfly distributions occur with the highest occurrence rate ~ 80% at ~ 20 – 04 MLT and L > ~ 5.5 and with the second peak (> ~ 50 %) at ~ 11 – 15 MLT of lower L-shells ~ 4.0. They can also extend to L = 3.5 and to other MLT intervals but with the occurrence rates predominantly < ~25%. It is further shown that outer zone relativistic electron butterfly distributions are likely to peak between . . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069350 Available at: http://doi.wiley.com/10.1002/2016GL069350
More Details
Authors: Ni Binbin, Zou Zhengyang, Fu Song, Cao Xing, Gu Xudong, et al.
Title: Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves
Abstract: Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within ±3° of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5°–9.2° both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of—(15.7°–17.5°) outside the plasmasphere with a smaller amplitude about 81 pT. Detailed test particle simulations quantify the electron resonant scattering rates by the off-equatorial MS waves to find that they can cause the pitch angle scattering and momentum diffusion of radiation belt electrons with equatorial pitch angles < ~75. . .
Date: 02/2018 Publisher: Geophysical Research Letters Pages: 1228 - 1236 DOI: 10.1002/grl.v45.310.1002/2017GL075788 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075788/full
More Details
Authors: Ni Binbin, Zou Zhengyang, Gu Xudong, Zhou Chen, Thorne Richard M, et al.
Title: Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations
Abstract: Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90° pitch angle with n-values of 2–3 as a supportive signature of chorus acceleration outside the pla. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021065 Available at: http://doi.wiley.com/10.1002/2015JA021065
More Details
Authors: Nakayama Y., Ebihara Y., Ohtani S, Gkioulidou M., Takahashi K., et al.
Title: Void structure of O + ions in the inner magnetosphere observed by the Van Allen Probes
Abstract: The Van Allen Probes Helium Oxygen Proton Electron instrument observed a new type of enhancement of O+ ions in the inner magnetosphere during substorms. As the satellite moved outward in the premidnight sector, the flux of the O+ ions with energy ~10 keV appeared first in the energy-time spectrograms. Then, the enhancement of the flux spread toward high and low energies. The enhanced flux of the O+ ions with the highest energy remained, whereas the flux of the ions with lower energy vanished near apogee, forming what we call the void structure. The structure cannot be found in the H+ spectrogram. We studied the generation mechanism of this structure by using numerical simulation. We traced the trajectories of O+ ions in the electric and magnetic fields from the global magnetohydrodynamic. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023013 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023013/full
More Details
Authors: Nakamura S., Omura Y., and Summers D.
Title: Fine structure of whistler-mode hiss in plasmaspheric plumes observed by the Van Allen Probes
Abstract: We survey 3 years (2013‐2015) of data from the Van Allen Probes related to plasmaspheric plume crossing events. We detect 194 plume crossing events, and we find that 97% of the plumes are accompanied by VLF hiss emissions. The plumes are mainly detected on the duskside or dayside. Careful examination of the hiss spectra reveals that all hiss emissions consist of obvious fine structure. Application of a band pass filter reveals that the fine structure is consistent with the occurrence of discrete wave packets. The hiss data display high coherency. The events are classified by location. Dusk side hiss and night side hiss tend to have extremely high polarization with no chorus at the high‐frequency end of the dynamic spectrum. The dusk side hiss has a distinct upper frequency limit. On th. . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025803 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025803
More Details
Authors: Nakamura Satoko, Omura Yoshiharu, Summers Danny, and Kletzing Craig A.
Title: Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss
Abstract: We test the recently developed nonlinear wave growth theory of plasmaspheric hiss against discrete rising tone elements of hiss emissions observed by the Van Allen Probes. From the phase variation of the waveforms processed by bandpass filters, we calculate the instantaneous frequencies and wave amplitudes. We obtain the theoretical relation between the wave amplitude and frequency sweep rates at the observation point by applying the convective growth rates and dispersion factors to the known relation at the equator. By plotting the theoretical relation over scatterplots of the wave amplitudes and the frequency sweep rates for rising tone elements, we find good agreement between the hiss observations and the nonlinear theory. We also find that the duration periods of the hiss elements are . . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070333 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL070333/full
More Details
M
Authors: Murphy Kyle R., Inglis Andrew R., Sibeck David G., Rae Jonathan, Watt Clare E. J., et al.
Title: Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm
Abstract: Ultra‐low frequency (ULF) waves play a fundamental role in the dynamics of the inner‐magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale (MMS) mission, we characterize the evolution of ULF waves during a high‐speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations (AFINO) code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the MMS sp. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024877 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA024877
More Details
Authors: Murphy Kyle R., Watt C. E. J., Mann Ian R., Rae Jonathan, Sibeck David G., et al.
Title: The global statistical response of the outer radiation belt during geomagnetic storms
Abstract: Using the total radiation belt electron content calculated from Van Allen Probe phase space density (PSD), the time‐dependent and global response of the outer radiation belt during storms is statistically studied. Using PSD reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and non‐adiabatic effects, and revealing a clear modality and repeatable sequence of events in storm‐time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ) dependent behaviour in the seed (150 MeV/G), relativistic (1000 MeV/G), and ultra‐relativistic (4000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, whilst the seed. . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076674 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076674
More Details
Authors: Mozer F, Bale S., Bonnell J W, Chaston C., Roth I, et al.
Title: Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth’s Outer Radiation Belt
Abstract: Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth’s outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230 000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1 000 000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, t. . .
Date: 12/2013 Publisher: Physical Review Letters DOI: 10.1103/PhysRevLett.111.235002 Available at: http://link.aps.org/doi/10.1103/PhysRevLett.111.235002
More Details
Authors: Mozer F S, Agapitov O. V., Blake J B, and Vasko I. Y.
Title: SIMULTANEOUS OBSERVATIONS OF LOWER BAND CHORUS EMISSIONS AT THE EQUATOR AND MICROBURST PRECIPITATING ELECTRONS IN THE IONOSPHERE
Abstract: On December 11, 2016 at 00:12:30 UT, Van Allen Probe-B, at the equator and near midnight, and AC6-B, in the ionosphere, were on magnetic field lines whose 100 km altitude foot points were separated by 600 km. Van Allen Probe-B observed a 30 second burst of lower band chorus waves (with maximum amplitudes >1 nT) at the same time that AC6-B observed intense microburst electrons in the loss cone. One-second averaged variations of the chorus intensity and the microburst electron flux were well-correlated. The low altitude electron flux expected from quasi-linear diffusion of the equatorial electrons by the equatorial chorus is in excellent agreement with the observed, one second averaged, low altitude electron flux. However the large amplitude, <0.5 second duration, low altitude electron pulse. . .
Date: 12/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076120 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076120/full
More Details
Authors: Mozer S., Agapitov O., Krasnoselskikh V., Lejosne S., Reeves D., et al.
Title: Direct Observation of Radiation-Belt Electron Acceleration from Electron-Volt Energies to Megavolts by Nonlinear Whistlers
Abstract: The mechanisms for accelerating electrons from thermal to relativistic energies in the terrestrial magnetosphere, on the sun, and in many astrophysical environments have never been verified. We present the first direct observation of two processes that, in a chain, cause this acceleration in Earth’s outer radiation belt. The two processes are parallel acceleration from electron-volt to kilovolt energies by parallel electric fields in time-domain structures (TDS), after which the parallel electron velocity becomes sufficiently large for Doppler-shifted upper band whistler frequencies to be in resonance with the electron gyration frequency, even though the electron energies are kilovolts and not hundreds of kilovolts. The electrons are then accelerated by the whistler perpendicular electri. . .
Date: 07/2014 Publisher: Physical Review Letters DOI: 10.1103/PhysRevLett.113.035001 Available at: http://link.aps.org/doi/10.1103/PhysRevLett.113.035001
More Details
Authors: Mozer F S, Artemyev A., Agapitov O. V., Mourenas D., and Vasko I.
Title: Near-Relativistic Electron Acceleration by Landau Trapping in Time Domain Structures
Abstract: Data from the Van Allen Probes have provided the first extensive evidence of nonlinear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (less than a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric field of time domain structures (TDSs) traveling at high speeds (~20,000 km/s). This observational evidence is supported by simulations and discussion of the source and spatial extent of the fast TDS. This result indicates the possibility that the electrostatic fields in TDS may generate the electron seed population for cyclotron resonance interaction with chorus waves to make higher-energy electrons.
Date: 01/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL067316 Available at: http://doi.wiley.com/10.1002/2015GL067316
More Details
Authors: Mozer F S, Hull A., Lejosne S., and Vasko I. Y.
Title: Reply to Comment by Nishimura Et Al.
Abstract: Nishimura et al. (2010, https://doi.org/10.1126/science.1193186, 2011, https://doi.org/10.1029/2011JA016876, 2013, https://doi.org/10.1029/2012JA018242, and in their comment, hereafter called N18) have suggested that chorus waves interact with equatorial electrons to produce pulsating auroras. We agree that chorus can scatter electrons >10 keV, as do Time Domain Structures (TDSs). Lower‐energy electrons occurring in pulsating auroras cannot be produced by chorus, but such electrons are scattered and accelerated by TDS. TDSs often occur with chorus and have power in their spectra at chorus frequencies. Thus, the absence of power at low frequencies is not evidence that TDSs are absent, as an example shows. Through examination of equatorial electric field waveforms and electron pitch angle . . .
Date: 03/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2018JA025218 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2018JA025218
More Details
Authors: Mozer F S, Agapitov O. V., Hull A., Lejosne S., and Vasko I. Y.
Title: Pulsating auroras produced by interactions of electrons and time domain structures
Abstract: Previous evidence has suggested that either lower band chorus waves or kinetic Alfven waves scatter equatorial kilovolt electrons that propagate to lower altitudes where they precipitate or undergo further low-altitude scattering to make pulsating auroras. Recently, time domain structures (TDSs) were shown, both theoretically and experimentally, to efficiently scatter equatorial electrons. To assess the relative importance of these three mechanisms for production of pulsating auroras, 11 intervals of equatorial THEMIS data and a 4 h interval of Van Allen Probe measurements have been analyzed. During these events, lower band chorus waves produced only negligible modifications of the equatorial electron distributions. During the several TDS events, the equatorial 0.1–3 keV electrons became. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024223 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024223/full
More Details
Authors: Moya Pablo. S., Pinto íctor A., Sibeck David G., Kanekal Shrikanth G, and Baker Daniel N
Title: On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations
Abstract: Using Van Allen Probes ECT-REPT observations we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion and no change in flux values depends strongly on L and energy. Enhancement events are more common for ∼ 2 MeV electrons at L ∼ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation be. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024735 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024735/full
More Details
Authors: Moya Pablo. S., Pinto Víctor A., Viñas Adolfo F., Sibeck David G., Kurth William S., et al.
Title: Weak Kinetic Alfvén Waves Turbulence during the November 14th 2012 geomagnetic storm: Van Allen Probes observations
Abstract: n the dawn sector, L~ 5.5 and MLT~4-7, from 01:30 to 06:00 UT during the November 14th 2012 geomagnetic storm, both Van Allen Probes observed an alternating sequence of locally quiet and disturbed intervals with two strikingly different power fluctuation levels and magnetic field orientations: either small (~10−2 nT2) total power with strong GSM Bx and weak By, or large (~10 nT2) total power with weak Bx, and strong By and Bz components. During both kinds of intervals the fluctuations occur in the vicinity of the local ion gyro-frequencies (0.01-10 Hz) in the spacecraft frame, propagate oblique to the magnetic field, (θ ~ 60°) and have magnetic compressibility C = |δB|||/|δB⊥| ∼ 1, where δB|| (δB⊥) are the average amplitudes of the fluctuations parallel (perpendicular) to the. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020281 Available at: http://doi.wiley.com/10.1002/2014JA020281
More Details
Authors: Mourenas D., Artemyev A. V., and Agapitov O.V.
Title: Approximate analytical formulation of radial diffusion and whistler-induced losses from a pre-existing flux peak in the plasmasphere
Abstract: Modeling the spatio-temporal evolution of relativistic electron fluxes trapped in the Earth's radiation belts in the presence of radial diffusion coupled with wave-induced losses should address one important question: how deep can relativistic electrons penetrate into the inner magnetosphere? However, a full modelling requires extensive numerical simulations solving the comprehensive quasi-linear equations describing pitch-angle and radial diffusion of the electron distribution, making it rather difficult to perform parametric studies of the flux behavior. Here, we consider the particular situation where a localized flux peak (or storage ring) has been produced at low L < 4 during a period of strong disturbances, through a combination of chorus-induced energy diffusion (or direct injection. . .
Date: 08/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021623 Available at: http://doi.wiley.com/10.1002/2015JA021623
More Details
Authors: Mourenas D., Zhang X.-J., Artemyev A. V., Angelopoulos V, Thorne R M, et al.
Title: Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets
Abstract: One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler‐mode chorus waves, is traditionally described using the quasi‐linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching ∼1% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long‐term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probe. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025417 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025417
More Details
Authors: Motoba T., Ohtani S, Gkioulidou M., Ukhorskiy A., Mitchell D G, et al.
Title: Response of Different Ion Species to Local Magnetic Dipolarization Inside Geosynchronous Orbit
Abstract: This paper examines how hydrogen, helium and oxygen (H, He and O) ion fluxes at 1–1000 keV typically respond to local magnetic dipolarization inside geosynchronous orbit (GEO). We extracted 144 dipolarizations which occurred at magnetic inclination > 30° from the 2012–2016 tail seasons' observations of the Van Allen Probes spacecraft and then defined typical flux changes of these ion species by performing a superposed epoch analysis. On average, the dipolarization inside GEO is accompanied by a precursory transient decrease in the northward magnetic field component, transient impulsive enhancement in the westward electric field component, and decrease (increase) in the proton density (temperature). The coincident ion species experience an energy‐dependent flux change, consisting of . . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025557 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025557
More Details
Authors: Motoba T., Takahashi K., Ukhorskiy A., Gkioulidou M., Mitchell D G, et al.
Title: Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager
Abstract: We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3–4 km s−1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ −103. During the event the spa. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020863 Available at: http://doi.wiley.com/10.1002/2014JA020863
More Details
Authors: Motoba T., Ohtani S, Anderson B J, Korth H., Mitchell D., et al.
Title: On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations
Abstract: Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values of ~5.0–5.6 in the premidnight inner tail region. The conjugate observations offer a unique opportunity to examine the detailed features of the arc location relative to large-scale Birkeland currents and of the magnetospheric counterpart. Our main findings include (1. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 8707 - 8722 DOI: 10.1002/jgra.v120.1010.1002/2015JA021676 Available at: http://doi.wiley.com/10.1002/jgra.v120.10http://doi.wiley.com/10.1002/2015JA021676http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021676
More Details
Authors: Morley Steven K., Sullivan John P., Henderson Michael G., Blake Bernard, and Baker Daniel N
Title: The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data
Abstract: Energetic electron observations in Earth's radiation belts are typically sparse and multi-point studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross-calibration into two parts – one that removes any spectral assumptions from the CXD flux calculation, and one that compares the energy spectra – we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra we use a combination of four distributions that, together. . .
Date: 02/2016 Publisher: Space Weather DOI: 10.1002/2015SW001339 Available at: http://doi.wiley.com/10.1002/2015SW001339
More Details
Authors: Morley S. K., Henderson M G, Reeves G D, Friedel R H W, and Baker D N
Title: Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results
Abstract: 1] Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(μ, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctions in L* (for given μ, K). We quantitatively assess the relative goodness of each model for radiation belt applications. We also quantify the uncertainty in the model magnetic field magnitude and the related uncertainties in PSD, which has applications for modeling and. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4798–4802 DOI: 10.1002/grl.50909 Available at: http://doi.wiley.com/10.1002/grl.50909
More Details
Authors: Miyoshi Y, Oyama S., Saito S., Kurita S., Fujiwara H., et al.
Title: Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations
Abstract: Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also sub-relativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler-mode wave–particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energ. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020690 Available at: http://doi.wiley.com/10.1002/2014JA020690
More Details
Authors: Miyoshi Y, Matsuda S., Kurita S., Nomura K., Keika K, et al.
Title: EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase
Abstract: Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 io. . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083024 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083024
More Details
Authors: Mitchell D G, Lanzerotti L J, Kim C K, Stokes M, Ho G, et al.
Title: Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
Abstract: The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A des. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 263-308 DOI: 10.1007/s11214-013-9965-x Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9965-x
More Details
Authors: Mitani K., Seki K., Keika K, Gkioulidou M., Lanzerotti L J, et al.
Title: Radial Transport of Higher-Energy Oxygen Ions Into the Deep Inner Magnetosphere Observed by Van Allen Probes
Abstract: The transport mechanism of the ring current ions differs among ion energies. Lower‐energy (≲150 keV) ions are well known to be transported convectively. Higher‐energy (≳150 keV) protons are reported to be transported diffusively, while there are few reports about transport of higher‐energy oxygen ions. We report the radial transport of higher‐energy oxygen ions into the deep inner magnetosphere during the late main phase of the magnetic storm on 23–25 April 2013 observed by the Van Allen Probes spacecraft. An enhancement of 1–100 mHz magnetic fluctuations is simultaneously observed. Observations of 3 and 30 mHz geomagnetic pulsations indicate the azimuthal mode number is ≤10. The fluctuations can resonate with the drift and bounce motions of the oxygen ions. The results s. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077500 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL077500
More Details
Authors: Mitani K., Seki K., Keika K, Gkioulidou M., Lanzerotti L J, et al.
Title: Statistical Study of Selective Oxygen Increase in High‐Energy Ring Current Ions During Magnetic Storms
Abstract: Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift‐bounce resonances with Pc 3–5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1–2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026168 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026168
More Details
Authors: Min Kyungguk, Bortnik J, and Lee Jeongwoo
Title: A novel technique for rapid L∗ calculation: algorithm and implementation
Abstract: Computing the magnetic drift invariant, L*, rapidly and accurately has always been a challenge to magnetospheric modelers, especially given the im- portance of this quantity in the radiation belt community. Min et al. (2013) proposed a new method of calculating L* using the principle of energy con- servation. Continuing with the approach outlined therein, the present pa- per focuses on the technical details of the algorithm to outline the implemen- tation, systematic analysis of accuracy, and verification of the speed of the new method. We also show new improvements which enable near real-time computation of L*. The relative error is on the order of 10−3 when ∼ 0.1 RE grid resolution is used and the calculation speed is about two seconds per particle in the popular Tsyganenko. . .
Date: 05/2013 Publisher: Journal of Geophysical Research Pages: 1912-1921 DOI: 10.1002/jgra.50250 Available at: http://onlinelibrary.wiley.com/doi/10.1002/jgra.50250/full
More Details
Authors: Min Kyungguk, Takahashi Kazue, Ukhorskiy Aleksandr Y., Manweiler Jerry W., Spence Harlan E., et al.
Title: Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
Abstract: This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ∼100; (2) the magnetic fi. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 3013-3-39 DOI: 10.1002/2016JA023770 Available at: onlinelibrary.wiley.com/doi/10.1002/2016JA023770/full
More Details
Authors: Min Kyungguk, Boardsen Scott A., Denton Richard E, and Liu Kaijun
Title: Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction
Abstract: Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2‐D particle‐in‐cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self‐consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctua. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026037 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026037
More Details
Authors: Min Kyungguk, Liu Kaijun, Bonnell John W., Breneman Aaron W., Denton Richard E, et al.
Title: Study of EMIC wave excitation using direct ion measurements
Abstract: With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution functions, we find that the observed ions make up about 15% of the total ions, but about 85% of them are still missing. By making legitimate estimates of the unseen cold (below ~2 eV) ion composition from cutoff frequencies suggested by the observed wave spectrum, a series of. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020717 Available at: http://doi.wiley.com/10.1002/2014JA020717
More Details
Authors: Min Kyungguk, Takahashi Kazue, Ukhorskiy Aleksandr Y., Manweiler Jerry W., Spence Harlan E., et al.
Title: Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
Abstract: This paper presents observations of ultra-low frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred two days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the pre-midnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ∼100; (2) the magneti. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023770 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023770/full
More Details
Authors: Min Kyungguk, Bortnik J, and Lee Jeongwoo
Title: A novel technique for rapid L* calculation using UBK coordinates
Abstract: [1] The magnetic drift invariant (L*) is an important quantity used for tracking and organizing particle dynamics in the radiation belts, but its accurate calculation has been computationally expensive in the past, thus making it difficult to employ this quantity in real-time space weather applications. In this paper, we propose a new, efficient method to calculate L* using the principle of energy conservation. This method uses Whipple's (U, B, K) coordinates to quickly and accurately determine trajectories of particles at the magnetic mirror point from two-dimensional isoenergy contours. The method works for any magnetic field configuration and is able to accommodate constant electric potential along field lines. We compare the result of this method with those of International Radiation B. . .
Date: 01/2013 Publisher: Journal of Geophysical Research DOI: 10.1029/2012JA018177
More Details

Pages