Biblio

Found 3430 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
double probe
Authors: Califf S., Li X, Blum L., Jaynes A., Schiller Q., et al.
Title: THEMIS measurements of quasi-static electric fields in the inner magnetosphere
Abstract: We use four years of THEMIS double-probe measurements to offer, for the first time, a complete picture of the dawn-dusk electric field covering all local times and radial distances in the inner magnetosphere based on in situ equatorial observations. This study is motivated by the results from the CRRES mission, which revealed a local maximum in the electric field developing near Earth during storm times, rather than the expected enhancement at higher L shells that is shielded near Earth as suggested by the Volland-Stern model. The CRRES observations were limited to the dusk side, while THEMIS provides complete local time coverage. We show strong agreement with the CRRES results on the dusk side, with a local maximum near L =4 for moderate levels of geomagnetic activity and evidence of stro. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020360 Available at: http://doi.wiley.com/10.1002/2014JA020360
More Details
double probe instrument
Authors: Lejosne Solène, and Mozer F S
Title: Shorting Factor In‐Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth's Plasmasphere
Abstract: Satellite‐based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In‐flight calibration of double‐probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly . . .
Date: 04/2019 Publisher: Earth and Space Science Pages: 646 - 654 DOI: 10.1029/2018EA000550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018EA000550
More Details
Drfit‐bounce resonance
Authors: Ren Jie, Zong Qiu-Gang, Miyoshi Yoshizumi, Rankin Robert, Spence Harlan E, et al.
Title: A comparative study of ULF waves' role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation
Abstract: By analyzing observations from Van Allen Probes in its inbound and outbound orbits, we present evidence of coherent enhancement of cold plasmaspheric electrons and ions due to drift‐bounce resonance with ULF waves. From 18:00 UT on 28 May 2017 to 10:00 UT on 29 May 2017, newly formed poloidal mode standing ULF waves with significant electric field oscillations were observed in two consecutive orbits when Probe B was travelling inbound. In contrast to observations during outbound orbits, the cold (< 150 eV) electorns measured by the HOPE instrument were characterized by flux enhancements several times larger and bi‐directional pitch angle distributions during inbound orbits. The electron number density inferred from upper hybrid waves is twice as larger as during inbound orbits, which w. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025255 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025255
More Details
drift Alfven ballooning mode
Authors: Chi P. J., and Le G.
Title: Observations of magnetospheric high-m poloidal waves by ST-5 satellites in low Earth orbit during geomagnetically quiet times
Abstract: The poloidal waves with large azimuthal wavenumbers (m~100) in the magnetosphere are known to be generated by drift or drift bounce resonance with energetic ring current particles, and these waves may play a role in modulating the energetic particles in the inner magnetosphere. When examining the magnetic field data collected by the NASA ST-5 satellites in the low Earth orbit, Le et al. [2011] discovered many wave events with frequencies of 30–200 mHz (in the Pc 2–3 band), and they proposed that these waves should in fact be Doppler-shifted high-m poloidal waves in the magnetosphere with frequencies at only a few mHz (in the Pc 5 band). Using a new method that examines the differences in wave phase detected by the three ST-5 satellites, we confirm that the frequencies in the Earth fram. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021145 Available at: http://doi.wiley.com/10.1002/2015JA021145
More Details
drift loss
Authors: Bin Kang Suk-, Fok Mei-Ching, Komar Colin, Glocer Alex, Li Wen, et al.
Title: An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013
Abstract: We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May – 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs duri. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024879 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024879/full
More Details
drift path
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Drift paths of ions composing multiple-nose spectral structures near the inner edge of the plasma sheet
Abstract: We present a case study of the H+, He+, and O+ multiple-nose structures observed by the Helium, Oxygen, Proton, and Electron instrument on board Van Allen Probe A over one complete orbit on 28 September 2013. Nose structures are observed near the inner edge of the plasma sheet and constitute the signatures of ion drift in the highly dynamic environment of the inner magnetosphere. We find that the multiple noses are intrinsically associated with variations in the solar wind. Backward ion drift path tracings show new details of the drift trajectories of these ions; i.e., multiple noses are formed by ions with a short drift time from the assumed source location to the inner region and whose trajectories (1) encircle the Earth different number of times or (2) encircle the Earth equal number of. . .
Date: 11/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071359 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071359/full
More Details
drift paths
Authors: Lejosne ène, Kunduri B. S. R., Mozer F S, and Turner D. L.
Title: Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop
Abstract: It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large‐scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F‐18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, . . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077969 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077969
More Details
drift resonance
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Claudepierre Seth G., Mann Ian R., et al.
Title: Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts
Abstract: Ultralow frequency electromagnetic oscillations, interpreted as standing hydromagnetic waves in the magnetosphere, are a major energy source that accelerates electrons to relativistic energies in the Van Allen radiation belt. Electrons can rapidly gain energy from the waves when they resonate via a process called drift resonance, which is observationally characterized by energy-dependent phase differences between electron flux and electromagnetic oscillations. Such dependence has been recently observed and interpreted as spacecraft identifications of drift resonance electron acceleration. Here we show that in the initial wave cycles, the observed phase relationship differs from that characteristic of well-developed drift resonance. We further examine the differences and find that they are . . .
Date: 08/2015 Publisher: Geophysical Research Letters Pages: 6199 - 6204 DOI: 10.1002/grl.v42.1510.1002/2015GL064988 Available at: http://doi.wiley.com/10.1002/grl.v42.15http://doi.wiley.com/10.1002/2015GL064988
More Details
Authors: Hartinger M. D., Claudepierre S G, Turner D. L., Reeves G D, Breneman A., et al.
Title: Diagnosis of ULF Wave-Particle Interactions With Megaelectron Volt Electrons: The Importance of Ultrahigh-Resolution Energy Channels
Abstract: Electron flux measurements are an important diagnostic for interactions between ultralow‐frequency (ULF) waves and relativistic (∼1 MeV) electrons. Since measurements are collected by particle detectors with finite energy channel width, they are affected by a phase mixing process that can obscure these interactions. We demonstrate that ultrahigh‐resolution electron measurements from the Magnetic Electron Ion Spectrometer on the Van Allen Probes mission—obtained using a data product that improves the energy resolution by roughly an order of magnitude—are crucial for understanding ULF wave‐particle interactions. In particular, the ultrahigh‐resolution measurements reveal a range of complex dynamics that cannot be resolved by standard measurements. Furthermore, the standard meas. . .
Date: 10/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080291
More Details
Authors: Takahashi Kazue, Claudepierre S G, Rankin Robert, Mann Ian, and Smith C W
Title: Van Allen Probes Observation of a Fundamental Poloidal Standing Alfvén Wave Event Related to Giant Pulsations
Abstract: The Van Allen Probes‐A spacecraft observed an ∼9 mHz ultra‐low‐frequency wave on 6 October 2012, at L∼ 5.7, in the dawn sector, and very near the magnetic equator. The wave had a strong electric field that was initially stronger in the azimuthal component and later in the radial component, exhibited properties of a fundamental standing Alfvén wave, and was associated with giant pulsations observed on the ground near the magnetic field footprint of the spacecraft. The wave was accompanied by oscillations of the flux of energetic protons (jH+). The amplitude of urn:x-wiley:jgra:media:jgra54254:jgra54254-math-0001 oscillations was large at equatorial pitch angles away from 90°, and the energy dependence of the phase and amplitude of the oscillations exhibited features consistent w. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025139 Available at: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2017JA025139
More Details
Authors: Hao Y. X., Zong Q.-G., Zhou X.-Z., Rankin R, Chen X. R., et al.
Title: Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: Boomerang-shaped pitch angle evolutions
Abstract: We present an analysis of “boomerang-shaped” pitch angle evolutions of outer radiation belt relativistic electrons observed by the Van Allen Probes after the passage of an interplanetary shock on June 7th, 2014. The flux at different pitch angles is modulated by Pc5 waves, with equatorially mirroring electrons reaching the satellite first. For 90∘ pitch angle electrons, the phase change of the flux modulations across energy exceeds 180∘, and increasingly tilts with time. Using estimates of the arrival time of particles of different pitch angles at the spacecraft location, a scenario is investigated in which shock-induced ULF waves interact with electrons through the drift resonance mechanism in a localized region westward of the spacecraft. Numerical calculations on particle energy. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074006 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074006/full
More Details
Authors: Zhou Xu-Zhi, Wang Zi-Han, Zong Qiu-Gang, Rankin Robert, Kivelson Margaret G., et al.
Title: Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations
Abstract: Ultralow frequency (ULF) electromagnetic waves in Earth's magnetosphere can accelerate charged particles via a process called drift resonance. In the conventional drift-resonance theory, a default assumption is that the wave growth rate is time-independent, positive, and extremely small. However, this is not the case for ULF waves in the real magnetosphere. The ULF waves must have experienced an earlier growth stage when their energy was taken from external and/or internal sources, and as time proceeds the waves have to be damped with a negative growth rate. Therefore, a more generalized theory on particle behavior during different stages of ULF wave evolution is required. In this paper, we introduce a time-dependent imaginary wave frequency to accommodate the growth and damping of the wav. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022447 Available at: http://doi.wiley.com/10.1002/2016JA022447http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022447
More Details
Authors: Li Li, Zhou Xu-Zhi, Omura Yoshiharu, Wang Zi-Han, Zong Qiu-Gang, et al.
Title: Nonlinear drift resonance between charged particles and ultra-low frequency waves: Theory and Observations
Abstract: In Earth's inner magnetosphere, electromagnetic waves in the ultra‐low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift‐resonance theory, linearization is applied under the assumption of weak wave‐particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, we extend the drift‐resonance theory into a nonlinear regime, to formulate nonlinear trapping of particles in a wave‐carried potential well, and predict the corresponding observable signatures such as rolled‐up structures in particle energy spectrum. After considering how. . .
Date: 08/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079038 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079038
More Details
Authors: Chen X.-R., Zong Q.-G., Zhou X.-Z., Blake Bernard, Wygant J. R., et al.
Title: Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves
Abstract: We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultralow frequency (ULF) waves on 29 October 2013. Oscillations in electron flux were observed at the period of ∼450 s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (∼50 to 150 keV) across the estimated resonant energy (∼104 keV) is ∼360°. This phase relationship is different from the characteristic 180° phase shift as expected from the drift-resonance theory. We speculate that the additional 180° phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic p. . .
Date: 02/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071252 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071252/full
More Details
Drift shell splitting
Authors: O'Brien T.P.
Title: The activity and radial dependence of anomalous diffusion by pitch-angle scattering on split magnetic drift shells
Abstract: Asymmetries in the magnetospheric magnetic field produce drift shell splitting, which causes the radial (drift shell) invariant to sometimes depend on pitch angle. Where drift shell splitting is significant, pitch angle scattering leads to diffusion in all three invariants of the particle's motion, including cross diffusion. We examine the magnitude of drift shell splitting-related anomalous diffusion for outer zone electrons compared to conventional diffusion in the absence of drift shell splitting. We assume the primary local scattering process is wave-particle interactions with chorus. We find that anomalous radial diffusion can exceed that of conventional drift resonant radial diffusion for particles with energies near 0.1 MeV at all radial distances outside the plasmasphere during q. . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020422 Available at: http://doi.wiley.com/10.1002/2014JA020422
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Hao Y. X., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations
Abstract: On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ∼1MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ∼1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons . . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069140 Available at: http://doi.wiley.com/10.1002/2016GL069140h
More Details
drift wave power density
Authors: Ripoll J.‐F., Farges T., Lay E. H., and Cunningham G. S.
Title: Local and Statistical Maps of Lightning‐Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World‐Wide Lightning Location Network Database
Abstract: We propose a new method that uses the World‐Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 × 108 strokes.). The ratio of the drift power density to the local power density defines a time‐resolved WWLLN‐based model of lightning‐generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time‐resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-ma. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 4122 - 4133 DOI: 10.1029/2018GL081146 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081146
More Details
drift-bounce resonance
Authors: Min Kyungguk, Takahashi Kazue, Ukhorskiy Aleksandr Y., Manweiler Jerry W., Spence Harlan E., et al.
Title: Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
Abstract: This paper presents observations of ultra-low frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred two days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the pre-midnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ∼100; (2) the magneti. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023770 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023770/full
More Details
Authors: Min Kyungguk, Takahashi Kazue, Ukhorskiy Aleksandr Y., Manweiler Jerry W., Spence Harlan E., et al.
Title: Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector
Abstract: This paper presents observations of ultralow-frequency (ULF) waves from Van Allen Probes. The event that generated the ULF waves occurred 2 days after a minor geomagnetic storm during a geomagnetically quiet time. Narrowband pulsations with a frequency of about 7 mHz with moderate amplitudes were registered in the premidnight sector when Probe A was passing through an enhanced density region near geosynchronous orbit. Probe B, which passed through the region earlier, did not detect the narrowband pulsations but only broadband noise. Despite the single-spacecraft measurements, we were able to determine various wave properties. We find that (1) the observed waves are a second harmonic poloidal mode propagating westward with an azimuthal wave number estimated to be ∼100; (2) the magnetic fi. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 3013-3-39 DOI: 10.1002/2016JA023770 Available at: onlinelibrary.wiley.com/doi/10.1002/2016JA023770/full
More Details
Authors: Ren Jie, Zong Q. G., Miyoshi Y, Zhou X. Z., Wang Y. F., et al.
Title: Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation
Abstract: We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations su. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024316 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024316/full
More Details
Authors: Wang Chengrui, Rankin Robert, and Zong Qiugang
Title: Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere
Abstract: Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to b. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020761 Available at: http://doi.wiley.com/10.1002/2014JA020761
More Details
drift-resonance
Authors: Chen X.-R., Zong Q.-G., Zhou X.-Z., Blake Bernard, Wygant John R., et al.
Title: Van Allen Probes observation of a 360° phase shift in the flux modulation of injected electrons by ULF waves
Abstract: We present Van Allen Probe observation of drift-resonance interaction between energetic electrons and ultra-low frequency (ULF) waves on October 29, 2013. Oscillations in electron flux were observed at the period of ∼450s, which is also the dominant period of the observed ULF magnetic pulsations. The phase shift of the electron fluxes (∼50 to 150 keV) across the estimated resonant energy (∼104 keV) is ∼360°. This phase relationship is different from the characteristic 180° phase shift as expected from the drift-resonance theory. We speculate that the additional 180° phase difference arises from the inversion of electron phase space density (PSD) gradient, which in turn is caused by the drift motion of the substorm injected electrons. This PSD gradient adjusts the characteristic . . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071252 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071252/full
More Details
drift‐bounce resonance
Authors: Chaston C. C., Bonnell J. W., Halford A J, Reeves G D, Baker D N, et al.
Title: Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves
Abstract: A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation‐belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfvénic fluctuations and multi‐timescale modulation of enhanced atmospheric X‐ray bremsstrahlung emission. The properties of the Alfvénic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro‐radii scale field structures. It is shown that this scattering may lead to the transport of electrons into the loss cone over an energy range from hundreds of keV to multi‐MeV on diffusive timescales on the order of hours. This process may account for modulation of atmospheric X‐ray fluxes observed from balloons and constitute a significant loss p. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079527 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079527
More Details
dropout
Authors: Ukhorskiy A Y, Sitnov M I, Millan R M, Kress B T, Fennell J. F., et al.
Title: Global Storm-Time Depletion of the Outer Electron Belt
Abstract: The outer radiation belt consists of relativistic (>0.5 MeV) electrons trapped on closed trajectories around Earth where the magnetic field is nearly dipolar. During increased geomagnetic activity, electron intensities in the belt can vary by ordersof magnitude at different spatial and temporal scale. The main phase of geomagnetic storms often produces deep depletions of electron intensities over broad regions of the outer belt. Previous studies identified three possible processes that can contribute to the main-phase depletions: adiabatic inflation of electron drift orbits caused by the ring current growth, electron loss into the atmosphere, and electron escape through the magnetopause boundary. In this paper we investigate the relative importance of the adiabatic effect and magnetopause . . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020645 Available at: http://doi.wiley.com/10.1002/2014JA020645
More Details
Authors: Bin Kang Suk-, Fok Mei-Ching, Komar Colin, Glocer Alex, Li Wen, et al.
Title: An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013
Abstract: We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May – 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs duri. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024879 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024879/full
More Details
Authors: Sorathia K. A., Ukhorskiy A Y, Merkin V. G., Fennell J. F., and Claudepierre S G
Title: Modeling the Depletion and Recovery of the Outer Radiation Belt During a Geomagnetic Storm: Combined MHD and Test Particle Simulations
Abstract: During geomagnetic storms the intensities of the outer radiation belt electron population can exhibit dramatic variability. Deep depletions in intensity during the main phase are followed by increases during the recovery phase, often to levels that significantly exceed their pre‐storm values. To study these processes, we simulate the evolution of the outer radiation belt during the 17 March 2013 geomagnetic storm using our newly‐developed radiation belt model (CHIMP) based on test particle and coupled 3D ring current and global MHD simulations, and driven solely with solar wind and F10.7 flux data. Our approach differs from previous work in that we use MHD information to identify regions of strong, bursty, and azimuthally localized Earthward convection in the magnetotail where test. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025506 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025506
More Details
dropouts
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Ma Q, et al.
Title: Physical mechanism causing rapid changes in ultrarelativistic electron pitch angle distributions right after a shock arrival: Evaluation of an electron dropout event
Abstract: Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, t. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022517 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022517/abstract
More Details
Authors: Turner D. L., Angelopoulos V, Morley S. K., Henderson M G, Reeves G D, et al.
Title: On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event
Abstract: On 30 September 2012, a flux “dropout” occurred throughout Earth's outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA's Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA's Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent . . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1530 - 1540 DOI: 10.1002/2013JA019446 Available at: http://doi.wiley.com/10.1002/2013JA019446
More Details
Dst
Authors: Murphy Kyle R., Mann Ian R., and Ozeke Louis G.
Title: A ULF wave driver of ring current energization
Abstract: ULF wave radial diffusion plays an important role in the transport of energetic electrons in the outer radiation belt, yet similar ring current transport is seldom considered even though ions satisfy a nearly identical drift resonance condition albeit without the relativistic correction. By examining the correlation between ULF wave power and the response of the ring current, characterized by Dst, we demonstrate a definite correlation between ULF wave power and Dst. Significantly, the lagged correlation peaks such that ULF waves precede the response of the ring current and Dst. We suggest that this correlation is the result of enhanced radial transport and energization of ring current ions through drift resonance and ULF wave radial diffusion of ring current ions. An analysis and compariso. . .
Date: 10/2014 Publisher: Geophysical Research Letters Pages: 6595 - 6602 DOI: 10.1002/grl.v41.1910.1002/2014GL061253 Available at: http://doi.wiley.com/10.1002/grl.v41.19http://doi.wiley.com/10.1002/2014GL061253
More Details
Dst Effect
Authors: Sigsbee K., Kletzing C A, Smith C W, MacDowall Robert, Spence Harlan, et al.
Title: Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
Abstract: We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12–14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC wa. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020877 Available at: http://doi.wiley.com/10.1002/2014JA020877
More Details
DSX
Authors: Ripoll J.-F., Albert J M, and Cunningham G. S.
Title: Electron lifetimes from narrowband wave-particle interactions within the plasmasphere
Abstract: This paper is devoted to the systematic study of electron lifetimes from narrowband wave-particle interactions within the plasmasphere. It relies on a new formulation of the bounce-averaged quasi-linear pitch angle diffusion coefficients parameterized by a single frequency, ω, and wave normal angle, θ. We first show that the diffusion coefficients scale with ω/Ωce, where Ωce is the equatorial electron gyrofrequency, and that maximal pitch angle diffusion occurs along the line α0 = π/2–θ, where α0 is the equatorial pitch angle. Lifetimes are computed for L shell values in the range [1.5, 3.5] and energies, E, in the range [0.1, 6] MeV as a function of frequency and wave normal angle. The maximal pitch angle associated with a given lifetime is also given, revealing the frequen. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020217 Available at: http://doi.wiley.com/10.1002/2014JA020217
More Details
ducted propagation
Authors: Zhang Zhenxia, Chen Lunjin, Li Xinqiao, Xia Zhiyang, Heelis Roderick A., et al.
Title: Observed propagation route of VLF transmitter signals in the magnetosphere
Abstract: Signals of powerful ground transmitters at various places have been detected by satellites in near‐Earth space. The study on propagation mode, ducted or nonducted, has attracted much attentions for several decades. Based on the statistical results from Van Allen Probes (data from Oct. 2012 to Mar. 2017) and DEMETER satellite (from Jan. 2006 to Dec. 2007), we present the ground transmitter signals distributed clearly in ionosphere and magnetosphere. The observed propagation route in the meridian plane in the magnetosphere for each of various transmitters from the combination of DEMETER and Van Allen Probes data in night time is revealed for the first time. We use realistic ray tracing simulation and compare simulation results against Van Allen Probes and DEMETER observation. By comparison. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025637 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025637
More Details
Ducting
Authors: Woodroffe J. R., Jordanova V K, Funsten H O, Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at: http://doi.wiley.com/10.1002/2015JA022219
More Details
Authors: Woodroffe J. R., Jordanova V. K., Funsten H. O., Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA022219/full
More Details
Dungey convection cycle
Authors: Zhang Q. -H., Lockwood M., Foster J. C., Zhang S. -R., Zhang B. -C., et al.
Title: Direct observations of the full Dungey convection cycle in the polar ionosphere for southward interplanetary magnetic field conditions
Abstract: Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume (SED) at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary (PCB) due to pulsed dayside magnetopause reconnection, as indicated by in-situ THEMIS observations. Convection led to the patches entering the polar cap and being transported antisunward, whilst being continuously monitored by the globally distributed arrays of GPS receivers and SuperDARN radars. Changes in convectio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021172 Available at: http://doi.wiley.com/10.1002/2015JA021172
More Details
duration
Authors: Lejosne ène, and Mozer F S
Title: Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements
Abstract: We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about nine hours on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods . . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074985 Available at: http://http://onlinelibrary.wiley.com/doi/10.1002/2017GL074985/full
More Details
Dynamic pressure
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Kim H., Choi C. R., et al.
Title: Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements
Abstract: In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023827 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023827/full
More Details
Authors: Stepanova M., Antonova E.E., Moya P.S., Pinto V.A., and Valdivia J.A.
Title: Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere During the 1 June 2013 Geomagnetic Storm
Abstract: Using data from Defense Meteorological Satellite Program 16–18, National Oceanic and Atmospheric Administration 15–19, and METOP 1–2 satellites, we reconstructed for the first time a two‐dimensional statistical distribution of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm with time resolution of 6 hr. Simultaneously, we used the data from Van Allen Probes and Time History of Events and Macroscale Interactions missions to obtain the in situ plasma pressure in the equatorial plane. This allowed us to corroborate that the dipole mapping works reasonably well during the storm time and that variations of plasma pressure are consistent at low and high altitudes; namely, we observed a drastic increase in plasma pressure a few hours before the storm on. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025965 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025965
More Details
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Shin D.-K., Hwang J., et al.
Title: Van Allen Probes Observations of Electromagnetic Ion Cyclotron Waves Triggered by Enhanced Solar Wind Dynamic Pressure
Abstract: Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward IMF quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the plasmapause at post-midnight and near the equator (magnetic latitude (MLAT) ~ -3o). Event 2 occurs by a sharp Pdyn pulse impact while Van Allen Probe-A is located inside the plasmapause in the dawn sector and rather away from the equator (MLAT ~ 12o). Event 3 is c. . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022841 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022841/full
More Details
Earth
Authors: Osmane Adnane, III Lynn B. Wilson, Blum Lauren, and Pulkkinen Tuija I.
Title: On the Connection Between Microbursts and Nonlinear Electronic Structures in Planetary Radiation Belts
Abstract: Using a dynamical-system approach, we have investigated the efficiency of large-amplitude whistler waves for causing microburst precipitation in planetary radiation belts by modeling the microburst energy and particle fluxes produced as a result of nonlinear wave–particle interactions. We show that wave parameters, consistent with large-amplitude oblique whistlers, can commonly generate microbursts of electrons with hundreds of keV-energies as a result of Landau trapping. Relativistic microbursts (>1 MeV) can also be generated by a similar mechanism, but require waves with large propagation angles ${\theta }_{{kB}}\gt 50^\circ $ and phase-speeds ${v}_{{\rm{\Phi }}}\geqslant c/9$. Using our result for precipitating density and energy fluxes, we argue that holes in the distribution functio. . .
Date: 01/2016 Publisher: The Astrophysical Journal Pages: 51 DOI: 10.3847/0004-637X/816/2/51 Available at: http://stacks.iop.org/0004-637X/816/i=2/a=51?key=crossref.70d237eeae19ada88cf791dd9ba676be
More Details
Earth radiation belts
Authors: Artemyev Anton, Agapitov Oleksiy, Mourenas Didier, Krasnoselskikh Vladimir, Shastun Vital, et al.
Title: Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
Abstract: In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth’s inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of obliq. . .
Date: 04/2016 Publisher: Space Science Reviews Pages: 261 - 355 DOI: 10.1007/s11214-016-0252-5 Available at: https://link.springer.com/article/10.1007/s11214-016-0252-5
More Details
Earth sciences
Authors: Brito Thiago V.
Title: Precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere
Abstract: There is a renewed interest in the study of the radiation belts with the recent launch of the Van Allen Probes satellites. The mechanisms that drive the global response of the radiation belts to geomagnetic storms are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in 2D and 3D test particle simulations. In this study simulations were performed to investigate energization and loss of energetic radiation belt electrons. The response of the radiation belts to a CM. . .
Date: DOI: N/A Available at: http://search.proquest.com/docview/1611957223?accountid=27702
More Details
Earth's magnetosphere
Authors: Da Silva L. A., Sibeck D., Alves L. R., Souza V. M., Jauer P. R., et al.
Title: Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014
Abstract: Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the co. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026184 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026184
More Details
Earth's outer radiation belt
Authors: Chen Yue, Friedel Reiner H W, Henderson Michael G., Claudepierre Seth G., Morley Steven K., et al.
Title: REPAD: An empirical model of pitch angle distributions for energetic electrons in the Earth's outer radiation belt
Abstract: We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth's outer radiation belt, and a new empirical model was developed based upon survey results. This model—relativistic electron pitch angle distribution (REPAD)—aims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and facilitate this statistical survey, we use Legendre polynomials to fit long-term in situ directional fluxes observed near the magnetic equator from three missions: CRRES, Polar, and LANL-97A. As the first of this kind of model, REPAD covers the whole outer belt region, providing not only the mean an. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1693 - 1708 DOI: 10.1002/jgra.v119.310.1002/2013JA019431 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019431
More Details
Earth's Outer Radiation Belts
Authors: Drake J. F., Agapitov O. V., and Mozer F S
Title: The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves
Abstract: The dynamics and structure of whistler turbulence relevant to electron acceleration in the Earth's outer radiation belt is explored with simulations and comparisons with observations. An initial state with an electron temperature anisotropy in a spatially localized domain drives whistlers which scatter electrons. An outward propagating front of whistlers and hot electrons nonlinearly evolves to form regions of intense parallel electric field with structure similar to observations. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063528 Available at: http://doi.wiley.com/10.1002/2015GL063528
More Details
Earth's radiation belts
Authors: Lanzerotti Louis J., and Baker Daniel N
Title: Space Weather Research: Earth's Radiation Belts
Abstract: Fundamental research on Earth's space radiation environment is essential for the design and the operations of modern technologies – for communications, weather, navigation, national security – that fly in the hostile space weather conditions above Earth's atmosphere. As the technologies become ever more advanced, more sophisticated understanding – and even predictability – of the environment is required for mission success
Date: 05/2017 Publisher: Space Weather DOI: 10.1002/2017SW001654 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001654/full
More Details
Authors: Panasyuk Mikhail
Title: “Nonempty” Gap Between Radiation Belts: The First Observations
Abstract: The first space experiments carried out in 1958 by the scientific groups of James Van Allen (United States) on board the first Explorer satellites and Sergey Vernov (Soviet Union) on board the satellite Sputnik 3 led to the discovery of the Earth's radiation belts—the particles (mainly protons and electrons) captured by the magnetic field of the Earth. Two scientific groups independently came to the conclusion that the electrons in the geomagnetic trapping region fill two areas, inner and outer radiation belts, unlike the protons, which fill the whole trapping region [see, e.g., Lemaire, 2000].
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 500 - 500 DOI: 10.1002/2013EO510006 Available at: http://doi.wiley.com/10.1002/2013EO510006
More Details
earthward propagation
Authors: Liu Z. Y., Zong Q.-G., Hao Y. X., Liu Y., and Chen X. R.
Title: The Radial Propagation Characteristics of the Injection Front: A Statistical Study Based on BD-IES and Van Allen Probes Observations
Abstract: Electron flux measurements outside geosynchronous orbit (GSO) obtained by the BeiDa Imaging Electron Spectrometer instrument onboard a 55 degrees-inclined GSO satellite, and inside GSO obtained by the Van Allen Probes are analyzed to investigate the temporal and spatial evolutions of the substorm injection region. In one year data started from October 2015, 63 injection events are identified. Firstly, our study shows that the injection signatures can be detected in a large radial extent in one single event, for example, from L ∼ 4.1 to L ∼ 9.3. Secondly, injection onset times are derived from the energy dispersion of particle injection signatures of each satellite. The difference of the onset times among satellites reveals that the injection boundary, termed as “injection front” in. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2018JA025185 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2018JA025185/full
More Details
eastward current
Authors: Stephens G. K., Sitnov M I, Ukhorskiy A Y, Roelof E. C., Tsyganenko N A, et al.
Title: Empirical modeling of the storm-time innermost magnetosphere using Van Allen Probes and THEMIS data: Eastward and banana currents
Abstract: The structure of storm-time currents in the inner magnetosphere, including its innermost region inside 4RE, is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and THEMIS missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at inline image and the eastward ring current concentrated at inline image resulting in a vortex current pattern. A simil. . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021700 Available at: http://doi.wiley.com/10.1002/2015JA021700
More Details

Pages