Biblio

Found 377 results
Filters: Keyword is Van Allen Probes  [Clear All Filters]

Pages

2014
Authors: Berman Simmie, Cheng Weilun, Borowski Heather, and Persons David
Title: Spin stabilization design and testing of the Van Allen Probes
Abstract: This paper describes the design decisions taken and the mass properties tracking and testing flow chosen for the Van Allen Probes spacecraft and their deployable systems to achieve the coning angle requirements. Topics include a list of major requirements, a brief description of the error budget, a description of the tracking process of the spacecraft mass properties prior to test, a description of the spin balance and mass properties testing of the spacecraft core and deployable systems, and a presentation of the final mass properties and coning angle calculations of the fully deployed observatories. Launched August 30, 2012, the observed on-orbit, fully deployed configuration coning angles met the requirements, validating the spin balance and mass properties tracking, testing, and calcul. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836234 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836234
More Details
Authors: Fennell J. F., Roeder J. L., Kurth W S, Henderson M G, Larsen B A, et al.
Title: Van Allen Probes observations of direct wave-particle interactions
Abstract: Quasiperiodic increases, or “bursts,” of 17–26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75–80°, while fluxes at 90° and <60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ~15–35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signa. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1869 - 1875 DOI: 10.1002/2013GL059165 Available at: http://doi.wiley.com/10.1002/2013GL059165
More Details
Authors: Chen Yue, Reeves Geoffrey D, Friedel Reiner H W, and Cunningham Gregory S.
Title: Global time-dependent chorus maps from low-Earth-orbit electron precipitation and Van Allen Probes data
Abstract: Substorm injected electrons (several–100 s keV) produce whistler-mode chorus waves that are thought to have a major impact on the radiation belts by causing both energization and loss of relativistic electrons in the outer belt. High-altitude measurements, such as those from the Van Allen Probes, provide detailed wave measurements at a few points in the magnetosphere. But physics-based models of radiation-belt dynamics require knowledge of the global distribution of chorus waves. We demonstrate that time-dependent, global distributions of near-equatorial chorus wave intensities can be inferred from low-Earth-orbit (LEO) measurements of precipitating low-energy electrons. We compare in situ observations of near-equatorial chorus waves with LEO observations of precipitating electrons a. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 755 - 761 DOI: 10.1002/2013GL059181 Available at: http://doi.wiley.com/10.1002/2013GL059181
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at: http://doi.wiley.com/10.1002/2013GL059132
More Details
Authors: Gerrard Andrew, Lanzerotti Louis, Gkioulidou Matina, Mitchell Donald, Manweiler Jerry, et al.
Title: Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission
Abstract: He ions contribute to Earth's ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1100 - 1105 DOI: 10.1002/2013GL059175 Available at: http://doi.wiley.com/10.1002/2013GL059175
More Details
Authors: Yu Yiqun, Jordanova Vania, Welling Dan, Larsen Brian, Claudepierre Seth G., et al.
Title: The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm
Abstract: We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convectio. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1126 - 1132 DOI: 10.1002/2014GL059322 Available at: http://doi.wiley.com/10.1002/2014GL059322
More Details
Authors: Hudson M K, Baker D N, Goldstein J, Kress B T, Paral J., et al.
Title: Simulated magnetopause losses and Van Allen Probe flux dropouts
Abstract: Three radiation belt flux dropout events seen by the Relativistic Electron Proton Telescope soon after launch of the Van Allen Probes in 2012 (Baker et al., 2013a) have been simulated using the Lyon-Fedder-Mobarry MHD code coupled to the Rice Convection Model, driven by measured upstream solar wind parameters. MHD results show inward motion of the magnetopause for each event, along with enhanced ULF wave power affecting radial transport. Test particle simulations of electron response on 8 October, prior to the strong flux enhancement on 9 October, provide evidence for loss due to magnetopause shadowing, both in energy and pitch angle dependence. Severe plasmapause erosion occurred during ~ 14 h of strongly southward interplanetary magnetic field Bz beginning 8 October coincident with. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1113 - 1118 DOI: 10.1002/2014GL059222 Available at: http://doi.wiley.com/10.1002/2014GL059222
More Details
Authors: Mann I. R., Usanova M. E., Murphy K., Robertson M. T., Milling D. K., et al.
Title: Spatial localization and ducting of EMIC waves: Van Allen Probes and ground-based observations
Abstract: On 11 October 2012, during the recovery phase of a moderate geomagnetic storm, an extended interval (> 18 h) of continuous electromagnetic ion cyclotron (EMIC) waves was observed by Canadian Array for Real-time Investigations of Magnetic Activity and Solar-Terrestrial Environment Program induction coil magnetometers in North America. At around 14:15 UT, both Van Allen Probes B and A (65° magnetic longitude apart) in conjunction with the ground array observed very narrow (ΔL ~ 0.1–0.4) left-hand polarized EMIC emission confined to regions of mass density gradients at the outer edge of the plasmasphere at L ~ 4. EMIC waves were seen with complex polarization patterns on the ground, in good agreement with model results from Woodroffe and Lysak (2012) and consistent with Earth's . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 785 - 792 DOI: 10.1002/2013GL058581 Available at: http://doi.wiley.com/10.1002/2013GL058581
More Details
Authors: Foster J. C., Erickson P. J., Coster A. J., Thaller S., Tao J., et al.
Title: Storm time observations of plasmasphere erosion flux in the magnetosphere and ionosphere
Abstract: Plasmasphere erosion carries cold dense plasma of ionospheric origin in a storm-enhanced density plume extending from dusk toward and through the noontime cusp and dayside magnetopause and back across polar latitudes in a polar tongue of ionization. We examine dusk sector (20 MLT) plasmasphere erosion during the 17 March 2013 storm (Dst ~ −130 nT) using simultaneous, magnetically aligned direct sunward ion flux observations at high altitude by Van Allen Probes RBSP-A (at ~3.0 Re) and at ionospheric heights (~840 km) by DMSP F-18. Plasma erosion occurs at both high and low altitudes where the subauroral polarization stream flow overlaps the outer plasmasphere. At ~20 UT, RBSP-A observed ~1.2E12 m−2 s−1 erosion flux, while DMSP F-18 observed ~2E13 m−2 s−1 sunward flux. We. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 762 - 768 DOI: 10.1002/2013GL059124 Available at: http://doi.wiley.com/10.1002/2013GL059124
More Details
Authors: Malaspina D. M., Ergun R. E., Sturner A., Wygant J R, Bonnell J W, et al.
Title: Chorus waves and spacecraft potential fluctuations: Evidence for wave-enhanced photoelectron escape
Abstract: Chorus waves are important for electron energization and loss in Earth's radiation belts and inner magnetosphere. Because the amplitude and spatial distribution of chorus waves can be strongly influenced by plasma density fluctuations and spacecraft floating potential can be a diagnostic of plasma density, the relationship between measured potential and chorus waves is examined using Van Allen Probes data. While measured potential and chorus wave electric fields correlate strongly, potential fluctuation properties are found not to be consistent with plasma density fluctuations on the timescales of individual chorus wave packets. Instead, potential fluctuations are consistent with enhanced photoelectron escape driven by chorus wave electric fields. Enhanced photoelectron escape may result i. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 236 - 243 DOI: 10.1002/2013GL058769 Available at: http://doi.wiley.com/10.1002/2013GL058769
More Details
Authors: O'Brien T P, Claudepierre S G, Blake J B, Fennell J. F., Clemmons J. H., et al.
Title: An empirically observed pitch-angle diffusion eigenmode in the Earth's electron belt near L *  = 5.0
Abstract: Using data from NASA's Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L*. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that e. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 251 - 258 DOI: 10.1002/2013GL058713 Available at: http://doi.wiley.com/10.1002/2013GL058713
More Details
Authors: Santolik O, Kletzing C A, Kurth W S, Hospodarsky G B, and Bounds S R
Title: Fine structure of large-amplitude chorus wave packets
Abstract: Whistler mode chorus waves in the outer Van Allen belt can have consequences for acceleration of relativistic electrons through wave-particle interactions. New multicomponent waveform measurements have been collected by the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science's Waves instrument. We detect fine structure of chorus elements with peak instantaneous amplitudes of a few hundred picotesla but exceptionally reaching up to 3 nT, i.e., more than 1% of the background magnetic field. The wave vector direction turns by a few tens of degrees within a single chorus element but also within its subpackets. Our analysis of a significant number of subpackets embedded in rising frequency elements shows that amplitudes of their peaks tend to decrease with frequ. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 293 - 299 DOI: 10.1002/2013GL058889 Available at: http://doi.wiley.com/10.1002/2013GL058889
More Details
Authors: Su Zhenpeng, Xiao Fuliang, Zheng Huinan, He Zhaoguo, Zhu Hui, et al.
Title: Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes
Abstract: Storm time electron radiation belt dynamics have been widely investigated for many years. Here we present a rarely reported nonstorm time event of electron radiation belt evolution observed by the Van Allen Probes during 21–24 February 2013. Within 2 days, a new belt centering around L=5.8 formed and gradually merged with the original outer belt, with the enhancement of relativistic electron fluxes by a factor of up to 50. Strong chorus waves (with power spectral density up to 10−4nT2/Hz) occurred in the region L>5. Taking into account the local acceleration driven by these chorus waves, the two-dimensional STEERB can approximately reproduce the observed energy spectrums at the center of the new belt. These results clearly illustrate the complexity of electron radiation belt behaviors . . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 229 - 235 DOI: 10.1002/2013GL058912 Available at: http://doi.wiley.com/10.1002/2013GL058912
More Details
Authors: Schiller Quintin, Li Xinlin, Blum Lauren, Tu Weichao, Turner Drew L, et al.
Title: A nonstorm time enhancement of relativistic electrons in the outer radiation belt
Abstract: Despite the lack of a geomagnetic storm (based on the Dst index), relativistic electron fluxes were enhanced over 2.5 orders of magnitude in the outer radiation belt in 13 h on 13–14 January 2013. The unusual enhancement was observed by Magnetic Electron Ion Spectrometer (MagEIS), onboard the Van Allen Probes; Relativistic Electron and Proton Telescope Integrated Little Experiment, onboard the Colorado Student Space Weather Experiment; and Solid State Telescope, onboard Time History of Events and Macroscale Interactions during Substorms (THEMIS). Analyses of MagEIS phase space density (PSD) profiles show a positive outward radial gradient from 4 < L < 5.5. However, THEMIS observations show a peak in PSD outside of the Van Allen Probes' apogee, which suggest a very interesting s. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 7 - 12 DOI: 10.1002/2013GL058485 Available at: http://doi.wiley.com/10.1002/2013GL058485
More Details
Authors: Chaston Christopher C., Bonnell J W, Wygant John R., Mozer Forrest, Bale Stuart D., et al.
Title: Observations of kinetic scale field line resonances
Abstract: We identify electromagnetic field variations from the Van Allen Probes which have the properties of Doppler shifted kinetic scale Alfvénic field line resonances. These variations are observed during injections of energetic plasmas into the inner magnetosphere. These waves have scale sizes perpendicular to the magnetic field which are determined to be of the order of an ion gyro-radius (ρi) and less. Cross-spectral analysis of the electric and magnetic fields reveals phase transitions at frequencies correlated with enhancements and depressions in the ratio of the electric and magnetic fields. Modeling shows that these observations are consistent with the excitation of field-line resonances over a broad range of wave numbers perpendicular to the magnetic field (k⊥) extending to k⊥ρi. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 209 - 215 DOI: 10.1002/2013GL058507 Available at: http://doi.wiley.com/10.1002/2013GL058507
More Details
Authors: Foster J. C., Erickson P. J., Baker D N, Claudepierre S G, Kletzing C A, et al.
Title: Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations
Abstract: On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (>2 MeV) electron fluxes increased immediately at L* ~ 4.5. . .
Date: 01/2014 Publisher: Geophysical Research Letters Pages: 20 - 25 DOI: 10.1002/2013GL058438 Available at: http://doi.wiley.com/10.1002/2013GL058438
More Details
Authors: Kletzing C. A.
Title: Recent results from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on the Van Allen Probes
Abstract: The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a tri-axial fluxgate magnetometer (MAG) and a Waves instrument which includes a tri-axial search coil magnetometer. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928090 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928090
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Mitchell D G, Takahashi K, Lanzerotti L J, et al.
Title: Rotationally driven ‘zebra stripes’ in Earth’s inner radiation belt
Abstract: Structured features on top of nominally smooth distributions of radiation-belt particles at Earth have been previously associated with particle acceleration and transport mechanisms powered exclusively by enhanced solar-wind activity1, 2, 3, 4. Although planetary rotation is considered to be important for particle acceleration at Jupiter and Saturn5, 6, 7, 8, 9, the electric field produced in the inner magnetosphere by Earth’s rotation can change the velocity of trapped particles by only about 1–2 kilometres per second, so rotation has been thought inconsequential for radiation-belt electrons with velocities of about 100,000 kilometres per second. Here we report that the distributions of energetic electrons across the entire spatial extent of Earth’s inner radiation belt are organize. . .
Date: 01/2014 Publisher: Nature Pages: 338 - 340 DOI: 10.1038/nature13046 Available at: http://www.nature.com/doifinder/10.1038/nature13046
More Details
2013
Authors: Schultz Colin
Title: Dynamics of the Earth's Radiation Belts and Inner Magnetosphere
Abstract: Trapped by Earth's magnetic field far above the planet's surface, the energetic particles that fill the radiation belts are a sign of the Sun's influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent research results and sets the stage for the work currently being done by NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). In this interview, Eos talks to Summers about magnetospheric research, whistler mode waves, solar storms, and the effects of the radiation belts on Earth.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 509 - 509 DOI: 10.1002/eost.v94.5210.1002/2013EO520007 Available at: http://doi.wiley.com/10.1002/eost.v94.52http://doi.wiley.com/10.1002/2013EO520007
More Details
Authors: Baker D N, Hoxie V C, Jaynes A., Kale A., Kanekal S G, et al.
Title: James Van Allen and His Namesake NASA Mission
Abstract: In many ways, James A. Van Allen defined and “invented” modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 469 - 470 DOI: 10.1002/eost.v94.4910.1002/2013EO490001 Available at: http://doi.wiley.com/10.1002/eost.v94.49http://doi.wiley.com/10.1002/2013EO490001
More Details
Authors: Mozer F, Bale S., Bonnell J W, Chaston C., Roth I, et al.
Title: Megavolt Parallel Potentials Arising from Double-Layer Streams in the Earth’s Outer Radiation Belt
Abstract: Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth’s outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230 000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1 000 000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, t. . .
Date: 12/2013 Publisher: Physical Review Letters DOI: 10.1103/PhysRevLett.111.235002 Available at: http://link.aps.org/doi/10.1103/PhysRevLett.111.235002
More Details
Authors: Thorne R M, Li W, Ni B, Ma Q, Bortnik J, et al.
Title: Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
Abstract: Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous. . .
Date: 12/2013 Publisher: Nature Pages: 411 - 414 DOI: 10.1038/nature12889 Available at: http://www.nature.com/doifinder/10.1038/nature12889
More Details
Authors: Ni Binbin, Bortnik Jacob, Thorne Richard M, Ma Qianli, and Chen Lunjin
Title: Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss
Abstract: We perform a comprehensive analysis to evaluate hiss-induced scattering effect on the pitch angle evolution and associated decay processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique hiss component is negligible. Quasi-parallel approximation is good for evaluation of hiss-driven electron scattering rates ≤ 2 MeV. However, realistic wave propagation angles as a function of latitude must be considered to accurately quantify hiss scattering rates above 2 MeV, and ambient plasma density is also a critical parameter. While the first-order cyclotron and the Landau resonances are dominant for hiss scattering < 2 MeV electrons, higher-order resonances become important and even dominant at intermediate pitch angles for ultrarelativistic (≥. . .
Date: 12/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 7740 - 7751 DOI: 10.1002/2013JA019260 Available at: http://doi.wiley.com/10.1002/2013JA019260
More Details
Authors: Hudson M K
Title: Space physics: A fast lane in the magnetosphere
Abstract: A marriage between satellite observations and modelling has shown that acceleration of electrons in the magnetosphere can be explained by scattering of these particles by plasma oscillations known as chorus waves.
Date: 12/2013 Publisher: Nature Pages: 383 - 384 DOI: 10.1038/504383a Available at: http://www.nature.com/doifinder/10.1038/504383a
More Details
Authors: Ginet G P, ’Brien T P, Huston S L, Johnston W R, Guild T B, et al.
Title: AE9, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment
Abstract: The radiation belts and plasma in the Earth’s magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering community for some time. To address this challenge a new set of models, denoted AE9/AP9/SPM, for energetic electrons, energetic protons and space plasma has been developed. The new models offer significant improvements including more detailed spatial resolution and the quantification of u. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9964-y Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9964-y
More Details
Authors: Millan R M, McCarthy M P, Sample J G, Smith D M, Thompson L D, et al.
Title: The Balloon Array for RBSP Relativistic Electron Losses (BARREL)
Abstract: BARREL is a multiple-balloon investigation designed to study electron losses from Earth’s Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (∼20 kg) stratospheric balloons will be successively launched to maintain an array of ∼5 payloads spread across ∼6 hours of magnetic local time in the region that magnetically maps to the radiation belts. Each balloon carries an X-ray spectrometer to measure the bremsstrahlung X-rays produced by precipitating relativistic electr. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9971-z Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9971-z
More Details
Authors: Mann Ian R., Lee E. A., Claudepierre S G, Fennell J. F., Degeling A., et al.
Title: Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts
Abstract: Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents . . .
Date: 11/2013 Publisher: Nature Communications DOI: 10.1038/ncomms3795 Available at: http://www.nature.com/doifinder/10.1038/ncomms3795
More Details
Authors: Ukhorskiy A Y, and Sitnov M I
Title: Dynamics of Radiation Belt Particles
Abstract: This paper reviews basic concepts of particle dynamics underlying theoretical aspect of radiation belt modeling and data analysis. We outline the theory of adiabatic invariants of quasiperiodic Hamiltonian systems and derive the invariants of particle motion trapped in the radiation belts. We discuss how the nonlinearity of resonant interaction of particles with small-amplitude plasma waves, ubiquitous across the inner magnetosphere, can make particle motion stochastic. Long-term evolution of a stochastic system can be described by the Fokker-Plank (diffusion) equation. We derive the kinetic equation of particle diffusion in the invariant space and discuss its limitations and associated challenges which need to be addressed in forthcoming radiation belt models and data analysis.
Date: 11/2013 Publisher: Space Science Reviews Pages: 545-578 DOI: 10.1007/s11214-012-9938-5 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9938-5
More Details
Authors: Maurer Richard, Goldsten J O, Peplowski P N, Holmes-Siedle A G, Butler Michael, et al.
Title: Early Results from the Engineering Radiation Monitor (ERM) and Solar Cell Monitor on the Van Allen Probes Mission
Abstract: The Engineering Radiation Monitor (ERM) measures dose, dose rate and charging currents on the Van Allen Probes mission to study the dynamics of earth's Van Allen radiation belts. Early results from this monitor show a variation in dose rates with time, a correlation between the dosimeter and charging current data, a map of charging current versus orbit altitude and a comparison of cumulative dose to pre-launch modeling after 260 days. Solar cell degradation monitor patches track the decrease in solar array output as displacement damage accumulates.
Date: 11/2013 Publisher: IEEE DOI: 10.1109/TNS.2013.2281937 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6651707
More Details
Authors: Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, et al.
Title: The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
Abstract: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation bel. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9993-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9993-6
More Details
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details
Authors: Goldsten J O, Maurer R H, Peplowski P N, Holmes-Siedle A G, Herrmann C C, et al.
Title: The Engineering Radiation Monitor for the Radiation Belt Storm Probes Mission
Abstract: An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA’s Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ∼0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-012-9917-x Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9917-x
More Details
Authors: Blake J B, Carranza P A, Claudepierre S G, Clemmons J H, Crain W R, et al.
Title: The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
Abstract: This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. . . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 383-421 DOI: 10.1007/s11214-013-9991-8
More Details
Authors: Blum L. W., Schiller Q., Li X, Millan R., Halford A., et al.
Title: New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation
Abstract: Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18–19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial fea. . .
Date: 11/2013 Publisher: Geophysical Research Letters Pages: 5833 - 5837 DOI: 10.1002/2013GL058546 Available at: http://doi.wiley.com/10.1002/2013GL058546
More Details
Authors: Zimbardo Gaetano
Title: A Particle Accelerator in the Radiation Belts
Abstract: Satellites in the radiation belts reveal plasma structures that can jumpstart the acceleration of electrons to very high energies.
Date: 11/2013 Publisher: Physics DOI: 10.1103/Physics.6.131 Available at: http://dx.doi.org/10.1103/Physics.6.131
More Details
Authors: Fox N J, and Burch J L
Title: Preface
Abstract: The discovery of the Van Allen radiation belts in 1958, starting with data from the United States’ first two successful orbiting spacecraft, Explorer’s I and III, was an astounding surprise and represented the founding of what we now call magnetospheric physics. Since that time many spacecraft have traversed the radiation belts en route to other more distant parts of Earth’s magnetosphere and other worlds beyond Earth’s orbit. After initial climatological models of the radiation belts were obtained in the 1960’s and early 1970’s, the main concern about them was the ability of spacecraft and astronauts to survive their intense radiation. And yet there were true scientific mysteries to be solved, glimpses of which came in the 1990’s from spacecraft like CRRES and SAMPEX. CRRES . . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 1-2 DOI: 10.1007/s11214-013-9997-2 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9997-2
More Details
Authors: Mitchell D G, Lanzerotti L J, Kim C K, Stokes M, Ho G, et al.
Title: Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
Abstract: The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine “how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations,” and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A des. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 263-308 DOI: 10.1007/s11214-013-9965-x Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9965-x
More Details
Authors: Kessel R L, Fox N J, and Weiss M
Title: The Radiation Belt Storm Probes (RBSP) and Space Weather
Abstract: Following the launch and commissioning of NASA’s Radiation Belt Storm Probes (RBSP) in 2012, space weather data will be generated and broadcast from the spacecraft in near real-time. The RBSP mission targets one part of the space weather chain: the very high energy electrons and ions magnetically trapped within Earth’s radiation belts. The understanding gained by RBSP will enable us to better predict the response of the radiation belts to solar storms in the future, and thereby protect space assets in the near-Earth environment. This chapter details the presently planned RBSP capabilities for generating and broadcasting near real-time space weather data, discusses the data products, the ground stations collecting the data, and the users/models that will incorporate the data into test-b. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 531-543 DOI: 10.1007/s11214-012-9953-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9953-6
More Details
Authors: Turney D, Matiella Novak A, Beisser K, and Fox N
Title: Radiation Belt Storm Probes (RBSP) Education and Public Outreach Program
Abstract: The Radiation Belt Storm Probes (RBSP) Education and Public Outreach (E/PO) program serves as a pipeline of activities to inspire and educate a broad audience about Heliophysics and the Sun-Earth system, specifically the Van Allen Radiation Belts. The program is comprised of a variety of formal, informal and public outreach activities that all align with the NASA Education Portfolio Strategic Framework outcomes. These include lesson plans and curriculum for use in the classroom, teacher workshops, internship opportunities, activities that target underserved populations, collaboration with science centers and NASA visitors’ centers and partnerships with experts in the Heliophysics and education disciplines. This paper will detail the activities that make up the RBSP E/PO program, their in. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 617-646 DOI: 10.1007/s11214-012-9945-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9945-6
More Details
Authors: Kirby Karen, Artis David, Bushman Stewart, Butler Michael, Conde Rich, et al.
Title: Radiation Belt Storm Probes—Observatory and Environments
Abstract: The National Aeronautics and Space Administration’s (NASA’s) Radiation Belt Storm Probe (RBSP) is an Earth-orbiting mission that launched August 30, 2012, and is the latest science mission in NASA’s Living with a Star Program. The RBSP mission will investigate, characterize and understand the physical dynamics of the radiation belts, as well as the influence of the Sun on the Earth’s environment, by measuring particles, electric and magnetic fields and waves that comprise geospace. The mission is composed of two identically instrumented spinning observatories in an elliptical orbit around earth with 600 km perigee, 30,000 km apogee and 10∘ inclination to provide full sampling of the Van Allen radiation belts. The twin RBSP observatories (recently renamed the Van Allen Probes) wil. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 59-125 DOI: 10.1007/s11214-012-9949-2 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9949-2
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Batiste S, Bolton M, et al.
Title: The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations
Abstract: Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ∼20 MeV) with exc. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 337-381 DOI: 10.1007/s11214-012-9950-9 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9950-9
More Details
Authors: Mazur J, Friesen L, Lin A, Mabry D, Katz N, et al.
Title: The Relativistic Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission
Abstract: The Relativistic Proton Spectrometer (RPS) on the Radiation Belt Storm Probes spacecraft is a particle spectrometer designed to measure the flux, angular distribution, and energy spectrum of protons from ∼60 MeV to ∼2000 MeV. RPS will investigate decades-old questions about the inner Van Allen belt proton environment: a nearby region of space that is relatively unexplored because of the hazards of spacecraft operation there and the difficulties in obtaining accurate proton measurements in an intense penetrating background. RPS is designed to provide the accuracy needed to answer questions about the sources and losses of the inner belt protons and to obtain the measurements required for the next-generation models of trapped protons in the magnetosphere. In addition to detailed informati. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 221-261 DOI: 10.1007/s11214-012-9926-9 Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9926-9
More Details
Authors: Spence H E, Reeves G D, Baker D N, Blake J B, Bolton M, et al.
Title: Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Radiation Belt Storm Probes (RBSP) Mission
Abstract: The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA’s Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) senso. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 311-336 DOI: DOI: 10.1007/s11214-013-0007-5 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0007-5
More Details
Authors: Mauk B H, Fox N J, Kanekal S G, Kessel R L, Sibeck D G, et al.
Title: Science Objectives and Rationale for the Radiation Belt Storm Probes Mission
Abstract: The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10∘). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ∼0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fiel. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 3-27, DOI: 10.1007/s11214-012-9908-y Available at: http://link.springer.com/article/10.1007%2Fs11214-012-9908-y
More Details
Authors: Shprits Yuri Y, Subbotin Dmitriy, Drozdov Alexander, Usanova Maria E., Kellerman Adam, et al.
Title: Unusual stable trapping of the ultrarelativistic electrons in the Van Allen radiation belts
Abstract: Radiation in space was the first discovery of the space age. Earth’s radiation belts consist of energetic particles that are trapped by the geomagnetic field and encircle the planet1. The electron radiation belts usually form a two-zone structure with a stable inner zone and a highly variable outer zone, which forms and disappears owing to wave–particle interactions on the timescale of a day, and is strongly influenced by the very-low-frequency plasma waves. Recent observations revealed a third radiation zone at ultrarelativistic energies2, with the additional medium narrow belt (long-lived ring) persisting for approximately 4 weeks. This new ring resulted from a combination of electron losses to the interplanetary medium and scattering by electromagnetic ion cyclotron waves to the Ear. . .
Date: 11/2013 Publisher: Nature Physics Pages: 699 - 703 DOI: 10.1038/nphys2760 Available at: http://www.nature.com/doifinder/10.1038/nphys2760
More Details
Authors: Li X, Schiller Q., Blum L., Califf S., Zhao H., et al.
Title: First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms
Abstract: Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65°) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10°) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the. . .
Date: 10/2013 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2013JA019342 Available at: http://doi.wiley.com/10.1002/2013JA019342
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Green J C, et al.
Title: Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes
Abstract: We adopt a physics-based technique to infer chorus wave amplitudes from the low-altitude electron population (30–100 keV) measured by multiple Polar Orbiting Environmental Satellites (POES), which provide extensive coverage over a broad region in L-shell and magnetic local time (MLT). This technique is validated by analyzing conjunction events between the Van Allen Probes measuring chorus wave amplitudes near the equator and POES satellites measuring the 30–100 keV electron population at the conjugate low altitudes. We apply this technique to construct the chorus wave distributions during the 8–9 October storm in 2012 and demonstrate that the inferred chorus wave amplitudes agree reasonably well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The . . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4526 - 4532 DOI: 10.1002/grl.v40.1710.1002/grl.50920 Available at: http://doi.wiley.com/10.1002/grl.v40.17http://doi.wiley.com/10.1002/grl.50920
More Details
Authors: Smith Evan J., Butler Michael H., Fretz Kristin, and Wilhelm Benjamin
Title: Lithium Ion Battery Fault Management on the Van Allen Probes
Abstract: The Van Allen Probes (formerly known as the Radiation Belt Storm Probes or RBSP) mission launched on 30 August 2012 as part of NASA’s Living With a Star (LWS) Program. The ultimate goal of the mission is to understand how populations of relativistic electrons and penetrating ions in the Earth’s Van Allen Radiation Belts are affected by the Sun. The mission consists of two nearly identical observatories orbiting in highly-elliptical Earth orbits. The two satellite system allows for the study of the spatial and temporal effects the Sun has on the Earth’s radiation belts. Each observatory is equipped with a suite of instruments designed to continuously study ions, electrons and the local magnetic and electric fields. A brief overview of the Van Allen Probe mission is pre. . .
Date: 09/2013 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/6.2013-5526 Available at: http://arc.aiaa.org/doi/pdf/10.2514/6.2013-5526
More Details
Authors: Morley S. K., Henderson M G, Reeves G D, Friedel R H W, and Baker D N
Title: Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results
Abstract: 1] Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(μ, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctions in L* (for given μ, K). We quantitatively assess the relative goodness of each model for radiation belt applications. We also quantify the uncertainty in the model magnetic field magnitude and the related uncertainties in PSD, which has applications for modeling and. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4798–4802 DOI: 10.1002/grl.50909 Available at: http://doi.wiley.com/10.1002/grl.50909
More Details
Authors: Harvey Raymond J., and Eichstedt John
Title: Van Allen Probes Low Cost Mission Operations Concept and Lessons Learned
Abstract: Following a successful 60-day commissioning period, NASA’s Radiation Belt Storm Probes (RBSP) mission, was renamed Van Allen Probes in honor of the discoverer of Earth’s radiation belts – James Van Allen. The Johns Hopkins University’s Applied Physics Laboratory (APL) executed the mission and is currently operating the twin spacecraft in their primary mission. Improving on the cost-savings concepts employed by prior APL projects, the Van Allen Probes mission operations was designed from the start for low-cost, highly-automated mission operations. This concept is realized with automated initial planning and contact scheduling, unattended real-time operations, and spacecraft performance assessment from the review of data products that have been automatically generat. . .
Date: 09/2013 Publisher: American Institute of Aeronautics and Astronautics DOI: 10.2514/MSPACE1310.2514/6.2013-5450 Available at: http://arc.aiaa.org/doi/abs/10.2514/6.2013-5450
More Details

Pages