Found 3430 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
whistler wave
Authors: Xia Zhiyang, Chen Lunjin, Dai Lei, Claudepierre Seth G., Chan Anthony A, et al.
Title: Modulation of chorus intensity by ULF waves deep in the inner magnetosphere
Abstract: Previous studies have shown that chorus wave intensity can be modulated by Pc4-Pc5 compressional ULF waves. In this study, we present Van Allen Probes observation of ULF wave modulating chorus wave intensity, which occurred deep in the magnetosphere. The ULF wave shows fundamental poloidal mode signature and mirror mode compressional nature. The observed ULF wave can modulate not only the chorus wave intensity but also the distribution of both protons and electrons. Linear growth rate analysis shows consistence with observed chorus intensity variation at low frequency (f <∼ 0.3fce), but cannot account for the observed higher-frequency chorus waves, including the upper band chorus waves. This suggests the chorus waves at higher-frequency ranges require nonlinear mechanisms. In addition, w. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070280 Available at:
More Details
Authors: Zheng Hao, Holzworth Robert H., Brundell James B., Jacobson Abram R., Wygant John R., et al.
Title: A Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN
Abstract: Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for mag. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022010 Available at:
More Details
Whistler waves
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., Vainchtein D. L., Mozer F S, et al.
Title: Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves
Abstract: In the present paper, we investigate the trapping of relativistic electrons by intense whistler-mode waves or electromagnetic ion cyclotron waves in the Earth's radiation belts. We consider the non-resonant impact of additional, lower amplitude magnetic field fluctuations on the stability of electron trapping. We show that such additional non-resonant fluctuations can break the adiabatic invariant corresponding to trapped electron oscillations in the effective wave potential. This destruction results in a diffusive escape of electrons from the trapped regime of motion and thus can lead to a significant reduction of the efficiency of electron acceleration. We demonstrate that when energetic electrons are trapped by intense parallel or very oblique whistler-mode waves, non-resonant magnetic . . .
Date: 08/2015 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4927774 Available at:
More Details
Authors: Wu S., Denton R. E., Liu K., and Hudson M K
Title: One- and two-dimensional hybrid simulations of whistler mode waves in a dipole field
Abstract: We simulate whistler mode waves using a hybrid code. There are four species in the simulations, hot electrons initialized with a bi-Maxwellian distribution with temperature in the direction perpendicular to background magnetic field greater than that in the parallel direction, warm isotropic electrons, cold inertialess fluid electrons, and protons as an immobile background. The density of the hot population is a small fraction of the total plasma density. Comparison between the dispersion relation of our model and other dispersion relations shows that our model is more accurate for lower frequency whistlers than for higher frequency whistlers. Simulations in 2-D Cartesian coordinates agree very well with those using a full dynamics code. In the 1-D simulations along the dipole magnetic fie. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 1908 - 1923 DOI: 10.1002/2014JA020736 Available at:
More Details
Authors: Tyler E., Breneman A., Cattell C., Wygant J, Thaller S., et al.
Title: Statistical occurrence and distribution of high amplitude whistler-mode waves in the outer radiation belt
Abstract: We present the first statistical analysis with continuous data coverage and non‐averaged amplitudes of the prevalence and distribution of high‐amplitude (> 5 mV/m) whistler‐mode waves in the outer radiation belt using 5 years of Van Allen Probes data. These waves are most common above L=3.5 and between MLT of 0‐7 where they are present 1‐4% of the time. During high geomagnetic activity, high‐amplitude whistler‐mode wave occurrence rises above 30% in some regions. During these active times the plasmasphere erodes to lower L and high‐amplitude waves are observed at all L outside of it, with the highest occurrence at low L (3.5‐4) in the pre‐dawn sector. These results have important implications for modeling radiation belt particle interactions with chorus, as large‐amp. . .
Date: 02/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082292 Available at:
More Details
Authors: Hwang J., Shin D. K., Yoon P. H., Kurth W S, Larsen B A, et al.
Title: Roles of hot electrons in generating upper-hybrid waves in the earth's radiation belt
Abstract: Electrostatic fluctuations near upper-hybrid frequency, which are sometimes accompanied by multiple-harmonic electron cyclotron frequency bands above and below the upper-hybrid frequency, are common occurrences in the Earth's radiation belt, as revealed through the twin Van Allen Probe spacecrafts. It is customary to use the upper-hybrid emissions for estimating the background electron density, which in turn can be used to determine the plasmapause locations, but the role of hot electrons in generating such fluctuations has not been discussed in detail. The present paper carries out detailed analyses of data from the Waves instrument, which is part of the Electric and Magnetic Field Instrument Suite and Integrated Science suite onboard the Van Allen Probes. Combined with the theoretical ca. . .
Date: 06/2017 Publisher: Physics of Plasmas Pages: 062904 DOI: 10.1063/1.4984249 Available at:
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Blum L.
Title: Transverse eV ion heating by random electric field fluctuations in the plasmasphere
Abstract: Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2–3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse. . .
Date: 02/2017 Publisher: Physics of Plasmas DOI: 10.1063/1.4976713 Available at:
More Details
Authors: Crabtree Chris, Ganguli Gurudas, and Tejero Erik
Title: Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas
Abstract: Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the re. . .
Date: 03/2017 Publisher: Physics of Plasmas Pages: 056501 DOI: 10.1063/1.4977539 Available at:
More Details
Authors: Artemyev Anton, Agapitov Oleksiy, Mourenas Didier, Krasnoselskikh Vladimir, Shastun Vital, et al.
Title: Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
Abstract: In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth’s inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of obliq. . .
Date: 04/2016 Publisher: Space Science Reviews Pages: 261 - 355 DOI: 10.1007/s11214-016-0252-5 Available at:
More Details
Authors: Agapitov O., Drake J. F., Vasko I., Mozer F S, Artemyev A., et al.
Title: Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave‐particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high‐amplitude whistlers suggest the importance of nonlinear wave‐particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, pres. . .
Date: 03/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076957 Available at:
More Details
Authors: áhlava J., ěmec F., ík O., šová I., Hospodarskyy G. B., et al.
Title: Longitudinal dependence of whistler mode electromagnetic waves in the Earth's inner magnetosphere
Abstract: We use the measurements performed by the DEMETER (2004‐2010) and the Van Allen Probes (2012‐2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth's inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz–2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus s. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025284 Available at:
More Details
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts
Abstract: Important nonlinear wave-wave and wave-particle interactions that occur in the Earth’s Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85º. When the pump amplitude exceeds a threshold ~5 x10^6 times the back- ground magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (~55º). The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB=B_0 ~7 x 10^-7. . .
Date: 08/2015 Publisher: Physics of Plasmas DOI: 10.1063/1.4928944 Available at:
More Details
Authors: Khazanov G., Sibeck D., Tel'nikhin A., and Kronberg T.
Title: Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves
Abstract: We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming ∼10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering, and relativistic electron precipitation events, that are manifested on large temporal scales of the order of the diffusion time ∼tens of minutes.
Date: 08/2014 Publisher: Physics of Plasmas Pages: 082901 DOI: 10.1063/1.4892185 Available at:
More Details
Whistler waves, Magnetosphere
Authors: Crabtree C., Rudakov L., Ganguli G., Mithaiwala M., Galinsky V., et al.
Title: Weak turbulence in the magnetosphere: Formation of whistler wave cavity by nonlinear scattering
Abstract: We consider the weak turbulence of whistler waves in the in low-β inner magnetosphere of the earth. Whistler waves, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scatteredwave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple. . .
Date: 01/2012 Publisher: Physics of Plasmas Pages: 032903 DOI: 10.1063/1.3692092 Available at:
More Details
whistler-mode chorus
Authors: Nakamura Satoko, Omura Yoshiharu, Summers Danny, and Kletzing Craig A.
Title: Observational evidence of the nonlinear wave growth theory of plasmaspheric hiss
Abstract: We test the recently developed nonlinear wave growth theory of plasmaspheric hiss against discrete rising tone elements of hiss emissions observed by the Van Allen Probes. From the phase variation of the waveforms processed by bandpass filters, we calculate the instantaneous frequencies and wave amplitudes. We obtain the theoretical relation between the wave amplitude and frequency sweep rates at the observation point by applying the convective growth rates and dispersion factors to the known relation at the equator. By plotting the theoretical relation over scatterplots of the wave amplitudes and the frequency sweep rates for rising tone elements, we find good agreement between the hiss observations and the nonlinear theory. We also find that the duration periods of the hiss elements are . . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070333 Available at:
More Details
whistler-mode chorus wave
Authors: Yang Chang, Xiao Fuliang, He Yihua, Liu Si, Zhou Qinghua, et al.
Title: Storm-time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus
Abstract: During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3−6 and MLT=2 − 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 MeV) electrons during two intervals when Probe A passed the location L = 4.3 along its orbit. The simulating results show that chorus with combined quasi-parallel and oblique components can produce a more pronounced flux enhancement in the pitch angle range ∼45∘. . .
Date: 02/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075894 Available at:
More Details
Whistler-mode hiss
Authors: Ripoll J.-F., Santol?k O., Reeves G., Kurth W S, Denton M., et al.
Title: Effects of whistler mode hiss waves in March 2013
Abstract: We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated aga. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024139 Available at:
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Krasnoselskikh V. V.
Title: Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes
Abstract: In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narr. . .
Date: 06/2015 Publisher: Physics of Plasmas Pages: 062901 DOI: 10.1063/1.4922061 Available at:
More Details
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Contemporaneous EMIC and Whistler-Mode Waves: Observations and Consequences for MeV Electron Loss
Abstract: The high variability of relativistic (MeV) electron fluxes in the Earth's radiation belts is partly controlled by loss processes involving resonant interactions with electromagnetic ion cyclotron (EMIC) and whistler-mode waves. But as previous statistical models were generated independently for each wave mode, whether simultaneous electron scattering by the two wave types has global importance remains an open question. Using >3 years of simultaneous Van Allen Probes and THEMIS measurements, we explore the contemporaneous presence of EMIC and whistler-mode waves in the same L-shell, albeit at different local times, determining the distribution of wave and plasma parameters as a function of L, Kp, and AE. We derive electron lifetimes from observations and provide the first statistics of comb. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073886 Available at:
More Details
Authors: Woodroffe J. R., Jordanova V K, Funsten H O, Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify a region of intense whistler mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became nonlinearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at:
More Details
Authors: Woodroffe J. R., Jordanova V. K., Funsten H. O., Streltsov A. V., Bengtson M. T., et al.
Title: Van Allen Probes Observations of Structured Whistler-mode Activity and Coincident Electron Landau Acceleration Inside a Remnant Plasmaspheric Plume
Abstract: We present observations from the Van Allen Probes spacecraft that identify an region of intense whistler-mode activity within a large density enhancement outside of the plasmasphere. We speculate that this density enhancement is part of a remnant plasmaspheric plume, with the observed wave being driven by a weakly anisotropic electron injection that drifted into the plume and became non-linearly unstable to whistler emission. Particle measurements indicate that a significant fraction of thermal (<100 eV) electrons within the plume were subject to Landau acceleration by these waves, an effect that is naturally explained by whistler emission within a gradient and high-density ducting inside a density enhancement.
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022219 Available at:
More Details
whistler‐mode chorus
Authors: Omura Yoshiharu, Hsieh Yi‐Kai, Foster John C., Erickson Philip J., Kletzing Craig A., et al.
Title: Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler‐Mode Chorus Emissions
Abstract: Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler‐mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler‐mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026374 Available at:
More Details
Authors: Lejosne ène, Maus Stefan, and Mozer F S
Title: Model-observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere
Abstract: Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the electric drift; (2) azimuthally, the model fails to explain the full amplitude of the observed corotation lag. In the second step, ionospheric corotation was modulated in the model by thermospheric winds, as given by the latest version of the Horizontal Wind Model (HWM1. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074862 Available at:
More Details
Authors: Shprits Y Y, and Spasojevic M.
Title: Global and comprehensive analysis of the inner magnetosphere as a coupled system: Physical understanding and applications
Abstract: The third Inner Magnetosphere Coupling (IMC III) workshop was held March 2015 at University of California, Los Angeles. The workshop included extensive discussion of space weather and applications bring together scientists from the solar wind, magnetosphere and ionospheric communities as well as space weather stakeholders and researchers focusing on translational research and applications in industry.
Date: 08/2015 Publisher: Space Weather DOI: 10.1002/2015SW001295 Available at:
More Details
WWLLN database
Authors: Ripoll J.‐F., Farges T., Lay E. H., and Cunningham G. S.
Title: Local and Statistical Maps of Lightning‐Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World‐Wide Lightning Location Network Database
Abstract: We propose a new method that uses the World‐Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 × 108 strokes.). The ratio of the drift power density to the local power density defines a time‐resolved WWLLN‐based model of lightning‐generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time‐resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-ma. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 4122 - 4133 DOI: 10.1029/2018GL081146 Available at:
More Details
x-ray spectroscopy
Authors: Woodger L A, Halford A J, Millan R M, McCarthy M P, Smith D M, et al.
Title: A Summary of the BARREL Campaigns: Technique for studying electron precipitation
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) studies the loss of energetic electrons from Earth's radiation belts. BARREL's array of slowly drifting balloon payloads was designed to capitalize on magnetic conjunctions with NASA's Van Allen Probes. Two campaigns were conducted from Antarctica in 2013 and 2014. During the first campaign in January and February of 2013, there were three moderate geomagnetic storms with Sym-Hmin < −40 nT. Similarly, two minor geomagnetic storms occurred during the second campaign, starting in December of 2013 and continuing on into February of 2014. Throughout the two campaigns, BARREL observed electron precipitation over a wide range of energies and exhibiting temporal structure from 100's of milliseconds to hours. Relativistic. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020874 Available at:
More Details
zebra stripes
Authors: Liu Y., Zong Q.-G., Zhou X.-Z., Foster J. C., and Rankin R
Title: Structure and Evolution of Electron "Zebra Stripes" in the Inner Radiation Belt
Abstract: Zebra stripes” are newly found energetic electron energy-spatial (L shell) distributed structure with an energy between tens to a few hundreds keV in the inner radiation belt. Using high-quality measurements of electron fluxes from Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the twin Van Allen Probes, we carry out case and statistical studies from April 2013 to April 2014 to study the structural and evolutionary characteristics of zebra stripes below L = 3. It is revealed that the zebra stripes can be transformed into evenly spaced patterns in the electron drift frequency coordinate: the detrended logarithmic fluxes in each L shell region can be well described by sinusoidal functions of drift frequency. The “wave number” of this sinusoidal function, whic. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022077 Available at:
More Details
Authors: Lejosne Solène, and Roederer Juan G.
Title: The “zebra stripes”: An effect of F-region zonal plasma drifts on the longitudinal distribution of radiation belt particles
Abstract: We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distributions into rigid corotation with the Earth. An equation based on a simple first-order model is set up to determine quantitatively the appearance of zebra stripes as a function of magnetic time. Our numerical predictions are in agreement with measurements by the Ra. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021925 Available at:
More Details
Authors: Li J., Bortnik J., Li W., Ma Q., Thorne R. M., et al.
Title: “Zipper-like” periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations
Abstract: An interesting form of “zipper-like” magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisat. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023536 Available at:
More Details
‘ring’ distributions
Authors: Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Qiao Zheng, Yao Fei, et al.
Title: Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere
Abstract: Fast magnetosonic (MS) waves play an important role in the dynamics of the inner magnetosphere. Theoretical prediction and simulation have demonstrated that MS waves can heat cold ions. However, direct observational evidence of cold ion heating by MS waves has so far remained elusive. In this paper, we show a typical event of cold ion heating by magnetosonic waves in a density cavity of the plasmasphere with observations of the Van Allen Probe mission on 22 August 2013. During enhancements of the MS wave intensity in the density cavity, the fluxes of trapped H+ and He+ ions with energies of 10–100 eV were observed to increase, implying that cold plasmaspheric ions were heated through high-order resonances with the MS waves. Based on simultaneous observations of ring current protons, we h. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024919 Available at:
More Details