Found 916 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Authors: Kurita S., Miyoshi Y, Shiokawa K., Higashio N., Mitani T., et al.
Title: Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations
Abstract: There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground‐based network observations. Arase observed a signature of MeV electron loss by EMIC waves, and the satellite and ground‐based observations constrained spatial‐temporal variations of the EMIC wave activity during the loss event. Multi‐satellite observation of MeV electron fluxes showed that ~2.5 MeV electron fluxes substantia. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080262 Available at:
More Details
Authors: Kurita Satoshi, Miyoshi Yoshizumi, Blake Bernard, Reeves Geoffery D., and Kletzing Craig A.
Title: Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations
Abstract: It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8–9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It . . .
Date: 02/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL068260 Available at:
More Details
Authors: Kurita Satoshi, Kadokura Akira, Miyoshi Yoshizumi, Morioka Akira, Sato Yuka, et al.
Title: Relativistic electron precipitations in association with diffuse aurora: Conjugate observation of SAMPEX and the all sky TV camera at Syowa Station
Abstract: It has been believed that whistler mode waves can cause relativistic electron precipitations. It has been also pointed out that pitch angle scattering of ~keV electrons by whistler mode waves results in diffuse auroras. Thus, it is natural to expect relativistic electron precipitations associated with diffuse auroras. Based on a conjugate observation between the SAMPEX spacecraft and the all-sky TV camera at Syowa Station, we report, for the first time, a case in which relativistic electron precipitations are associated with diffuse aurora. The SAMPEX observation shows that the precipitations of >1 MeV electrons are well accompanied with those of >150 and >400 keV electrons. This indicates that electrons in the energy range from several keV to >1 MeV precipitate into the atmosphere s. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064564 Available at:
More Details
Authors: Kurth W S, De Pascuale S., Faden J. B., Kletzing C A, Hospodarsky G B, et al.
Title: Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes
Abstract: The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing . . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020857 Available at:
More Details
Authors: Lanzerotti Louis J., and Baker Daniel N
Title: Space Weather Research: Earth's Radiation Belts
Abstract: Fundamental research on Earth's space radiation environment is essential for the design and the operations of modern technologies – for communications, weather, navigation, national security – that fly in the hostile space weather conditions above Earth's atmosphere. As the technologies become ever more advanced, more sophisticated understanding – and even predictability – of the environment is required for mission success
Date: 05/2017 Publisher: Space Weather DOI: 10.1002/2017SW001654 Available at:
More Details
Authors: Lanzerotti L J, and Morgan Caroline G
Title: ULF Geomagnetic Power near L = 4, 2. Temporal Variation of the Radial Diffusion Coefficient for Relativistic Electrons
Abstract: Measurements at conjugate points on the ground near L = 4 of the power spectra of magnetic-field fluctuations in the frequency range 0.5 to 20 mHz are used as a means of estimating daily values for the relativistic-electron radial-diffusion coefficient DLL for two periods in December 1971 and January 1972. The values deduced for L−10 DLL show a strong variation with magnetic activity, as measured by the Fredricksburg magnetic index KFR. The radial-diffusion coefficient typically increases by a factor of ∼10 for a unit increase in KFR. When KFR ≲ 2, it is generally found that DLL ≲ 2 × 10−9 L10 day−1 for equatorially mirroring electrons having a first invariant M = 750 Mev/gauss; a value of DLL ∼4 × 10−7 L10 day−1 is deduced for one day on which the mean KFR was 4.5. The. . .
Date: 08/1973 Publisher: Journal of Geophysical Research Pages: 4600 - 4610 DOI: 10.1029/JA078i022p04600 Available at:
More Details
Authors: Lanzerotti Louis J.
Title: Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s
Abstract: Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026763 Available at:
More Details
Authors: Lanzerotti L J, Maclennan C G, and Schulz Michael
Title: Radial Diffusion of Outer-Zone Electrons: An Empirical Approach to Third-Invariant Violation
Abstract: The near-equatorial fluxes of outer-zone electrons (E>0.5 Mev and E>1.9 Mev) measured by an instrument on the satellite Explorer 15 following the geomagnetic storm of December 17–18, 1962, are used to determine the electron radial diffusion coefficients and electron lifetimes as functions of L for selected values of the conserved first invariant µ. For each value of µ, the diffusion coefficient is assumed to be time-independent and representable in the form D = DnLn. The diffusion coefficients and lifetimes are then simultaneously obtained by requiring that the L-dependent reciprocal electron lifetime, as determined from the Fokker-Planck equation, deviate minimally from a constant in time. Applied to the data, these few assumptions yield a value of D that is smaller by approximately a. . .
Date: 10/1970 Publisher: Journal of Geophysical Research Pages: 5351 - 5371 DOI: 10.1029/JA075i028p05351 Available at:
More Details
Authors: Le G., Chi P. J., Strangeway R J, Russell C. T., Slavin J. A., et al.
Title: Global observations of magnetospheric high- m poloidal waves during the 22 June 2015 magnetic storm
Abstract: We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally obs. . .
Date: 04/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073048 Available at:
More Details
Authors: Lee Jeongwoo, Min Kyungguk, and Kim Kap-Sung
Title: Characteristic dimension of electromagnetic ion cyclotron wave activity in the magnetosphere
Abstract: [1] In this paper, we estimate the size of coherent activity of electromagnetic ion cyclotron (EMIC) waves using the multi‒spacecraft observations made during the Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission. We calculate the cross‒correlations between EMIC wave powers measured by different THEMIS spacecraft, plot them over the separation distances between pairs of observing spacecraft, and determine the 1/e folding distance of the correlations as the characteristic dimension of the coherent wave activity. The characteristic radius in the direction transverse to the local magnetic field is found to lie in rather a wide range of 1500–8600 km varying from the AM to PM sectors and also from hydrogen to helium bands. However, the characteristic d. . .
Date: 04/2013 Publisher: Journal of Geophysical Research: Space Physics Pages: 1651 - 1658 DOI: 10.1002/jgra.50242 Available at:
More Details
Authors: Lee Jongkil, Kim Kyung-Chan, Giuseppe Romeo, Ukhorskiy Sasha, Sibeck David, et al.
Title: Space Weather Operation at KASI with Van Allen Probes Beacon Signals
Abstract: The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron fl. . .
Date: 01/2018 Publisher: Space Weather DOI: 10.1002/2017SW001726 Available at:
More Details
Authors: Lee Justin H., and Angelopoulos Vassilis
Title: Observations and modeling of EMIC wave properties in the presence of multiple ion species as function of magnetic local time
Abstract: Electromagnetic ion cyclotron (EMIC) wave generation and propagation in Earth's magnetosphere depend on readily measurable hot (a few to tens of keV) plasma sheet ions, elusive plasmaspheric or ionospheric cold (sub-eV to a few eV) ions, and partially heated warm ions (tens to hundreds of eV). Previous work has assumed all low-energy ions are cold and not considered possible effects of warm ions. Using measurements by multiple Time History of Events and Macroscale Interactions during Substorms spacecraft, we analyze four typical EMIC wave events in the four magnetic local time sectors and consider the properties of both cold and warm ions supplied from previous statistical studies to interpret the wave observations using linear theory. As expected, we find that dusk EMIC waves grow due to . . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020469 Available at:
More Details
Authors: Lei Mingda, Xie Lun, Li Jinxing, Pu Zuyin, Fu Suiyan, et al.
Title: The Radiation Belt Electron Scattering by Magnetosonic Wave: Dependence on Key Parameters
Abstract: Magnetosonic (MS) waves have been found capable of creating radiation belt electron butterfly distributions in the inner magnetosphere. To investigate the physical nature of the interactions between radiation belt electrons and MS waves, and to explore a preferential condition for MS waves to scatter electrons efficiently, we performed a comprehensive parametric study of MS wave-electron interactions using test particle simulations. The diffusion coefficients simulated by varying the MS wave frequency show that the scattering effect of MS waves is frequency insensitive at low harmonics (f < 20 fcp), which has great implications on modeling the electron scattering caused by MS waves with harmonic structures. The electron scattering caused by MS waves is very sensitive to wave normal angles,. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023801 Available at:
More Details
Authors: Lejosne ène, and Mozer F S
Title: Typical values of the electric drift E  ×  B / B 2 in the inner radiation belt and slot region as determined from Van Allen Probe measurements
Abstract: The electric drift E × B/B2 plays a fundamental role for the description of plasma flow and particle acceleration. Yet it is not well-known in the inner belt and slot region because of a lack of reliable in situ measurements. In this article, we present an analysis of the electric drifts measured below L ~ 3 by both Van Allen Probes A and B from September 2012 to December 2014. The objective is to determine the typical components of the equatorial electric drift in both radial and azimuthal directions. The dependences of the components on radial distance, magnetic local time, and geographic longitude are examined. The results from Van Allen Probe A agree with Van Allen Probe B. They show, among other things, a typical corotation lag of the order of 5 to 10% below L ~ 2.6, as w. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023613 Available at:
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Shorting Factor In‐Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth's Plasmasphere
Abstract: Satellite‐based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In‐flight calibration of double‐probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly . . .
Date: 04/2019 Publisher: Earth and Space Science Pages: 646 - 654 DOI: 10.1029/2018EA000550 Available at:
More Details
Authors: Lejosne ène, and Mozer F S
Title: Sub-Auroral Polarization Stream (SAPS) duration as determined from Van Allen Probe successive electric drift measurements
Abstract: We examine a characteristic feature of the magnetosphere-ionosphere coupling, namely, the persistent and latitudinally narrow bands of rapid westward ion drifts called the Sub-Auroral Polarization Streams (SAPS). Despite countless works on SAPS, information relative to their durations is lacking. Here, we report on the first statistical analysis of more than 200 near-equatorial SAPS observations based on more than two years of Van Allen Probe electric drift measurements. First, we present results relative to SAPS radial locations and amplitudes. Then, we introduce two different ways to estimate SAPS durations. In both cases, SAPS activity is estimated to last for about nine hours on average. However, our estimates for SAPS duration are limited either by the relatively long orbital periods . . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074985 Available at: http://
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Van Allen Probe measurements of the electric drift E × B/B2 at Arecibo's L = 1.4 field line coordinate
Abstract: We have used electric and magnetic measurements by Van Allen Probe B from 2013 to 2014 to examine the equatorial electric drift E × B/B2 at one field line coordinate set to Arecibo's incoherent scatter radar location (L = 1.43). We report on departures from the traditional picture of corotational motion with the Earth in two ways: (1) the rotational angular speed is found to be 10% smaller than the rotational angular speed of the Earth, in agreement with previous works on plasmaspheric notches, and (2) the equatorial electric drift displays a dependence in magnetic local time, with a pattern consistent with the mapping of the Arecibo ionosphere dynamo electric fields along equipotential magnetic field lines. The electric fields due to the ionosphere dynamo are therefore expected t. . .
Date: 07/2016 Publisher: Geophysical Research Letters Pages: 6768 - 6774 DOI: 10.1002/2016GL069875 Available at:
More Details
Authors: Lejosne ène, Maus Stefan, and Mozer F S
Title: Model-observation comparison for the geographic variability of the plasma electric drift in the Earth's innermost magnetosphere
Abstract: Plasmaspheric rotation is known to lag behind Earth rotation. The causes for this corotation lag are not yet fully understood. We have used more than two years of Van Allen Probe observations to compare the electric drift measured below L~2 with the predictions of a general model. In the first step, a rigid corotation of the ionosphere with the solid Earth was assumed in the model. The results of the model-observation comparison are twofold: (1) radially, the model explains the average observed geographic variability of the electric drift; (2) azimuthally, the model fails to explain the full amplitude of the observed corotation lag. In the second step, ionospheric corotation was modulated in the model by thermospheric winds, as given by the latest version of the Horizontal Wind Model (HWM1. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074862 Available at:
More Details
Authors: Lejosne Solène, and Roederer Juan G.
Title: The “zebra stripes”: An effect of F-region zonal plasma drifts on the longitudinal distribution of radiation belt particles
Abstract: We examine a characteristic effect, namely, the ubiquitous appearance of structured peaks and valleys called zebra stripes in the spectrograms of energetic electrons and ions trapped in the inner belt below L ~ 3. We propose an explanation of this phenomenon as a purely kinematic consequence of particle drift velocity modulation caused by F region zonal plasma drifts in the ionosphere. In other words, we amend the traditional assumption that the electric field associated with ionospheric plasma drives trapped particle distributions into rigid corotation with the Earth. An equation based on a simple first-order model is set up to determine quantitatively the appearance of zebra stripes as a function of magnetic time. Our numerical predictions are in agreement with measurements by the Ra. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021925 Available at:
More Details
Authors: Lejosne ène, and Mozer F S
Title: Magnetic activity dependence of the electric drift below L=3
Abstract: More than two years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L=3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the night‐side. The amplitude of the slowdown is a function of L, local time MLT, and Kp, in a pattern consistent with the storm‐time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L=3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and MLT. It is the first tim. . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077873 Available at:
More Details
Authors: Lejosne ène, Kunduri B. S. R., Mozer F S, and Turner D. L.
Title: Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop
Abstract: It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large‐scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F‐18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, . . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077969 Available at:
More Details
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at:
More Details
Authors: Lessard Marc R., Lindgren Erik A., Engebretson Mark J, and Weaver Carol
Title: Solar cycle dependence of ion cyclotron wave frequencies
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020791 Available at:
More Details
Authors: Lessard Marc R., Paulson Kristoff, Spence Harlan E., Weaver Carol, Engebretson Mark J, et al.
Title: Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with B z >
Abstract: During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low‐latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were d. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026477 Available at:
More Details
Authors: Li W, Thorne R M, Bortnik J, Reeves G D, Kletzing C A, et al.
Title: An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons
Abstract: Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100–2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed conve. . .
Date: 08/2013 Publisher: Geophysical Research Letters Pages: 3798 - 3803 DOI: 10.1002/grl.50787 Available at:
More Details
Authors: Li X, Schiller Q., Blum L., Califf S., Zhao H., et al.
Title: First Results from CSSWE CubeSat: Characteristics of Relativistic Electrons in the Near-Earth Environment During the October 2012 Magnetic Storms
Abstract: Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board the Colorado Student Space Weather Experiment (CSSWE) CubeSat mission, which was launched into a highly inclined (65°) low Earth orbit, are analyzed along with measurements from the Relativistic Electron and Proton Telescope (REPT) and the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the Van Allen Probes, which are in a low inclination (10°) geo-transfer-like orbit. Both REPT and MagEIS measure the full distribution of energetic electrons as they traverse the heart of the outer radiation belt. However, due to the small equatorial loss cone (only a few degrees), it is difficult for REPT and MagEIS to directly determine which electrons will precipitate into the. . .
Date: 10/2013 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2013JA019342 Available at:
More Details
Authors: Li W, Mourenas D., Artemyev A. V., Bortnik J, Thorne R M, et al.
Title: Unraveling the excitation mechanisms of highly oblique lower band chorus waves
Abstract: Excitation mechanisms of highly oblique, quasi-electrostatic lower band chorus waves are investigated using Van Allen Probes observations near the equator of the Earth's magnetosphere. Linear growth rates are evaluated based on in situ, measured electron velocity distributions and plasma conditions and compared with simultaneously observed wave frequency spectra and wave normal angles. Accordingly, two distinct excitation mechanisms of highly oblique lower band chorus have been clearly identified for the first time. The first mechanism relies on cyclotron resonance with electrons possessing both a realistic temperature anisotropy at keV energies and a plateau at 100–500 eV in the parallel velocity distribution. The second mechanism corresponds to Landau resonance with a 100–500 eV . . .
Date: 09/2016 Publisher: Geophysical Research Letters Pages: 8867 - 8875 DOI: 10.1002/grl.v43.1710.1002/2016GL070386 Available at:
More Details
Authors: Li X, Selesnick R. S., Baker D N, Jaynes A. N., Kanekal S G, et al.
Title: Upper limit on the inner radiation belt MeV electron Intensity
Abstract: No instruments in the inner radiation belt are immune from the unforgiving penetration of the highly energetic protons (10s of MeV to GeV). The inner belt proton flux level, however, is relatively stable, thus for any given instrument, the proton contamination often leads to a certain background noise. Measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a low Earth orbit, clearly demonstrate that there exist sub-MeV electrons in the inner belt because of their flux level is orders of magnitude higher than the background, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Detailed analysis of high-quality measurements from . . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020777 Available at:
More Details
Authors: Li Haimeng, Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Wang Dedong, et al.
Title: The enhancement of cosmic radio noise absorption due to hiss-driven energetic electron precipitation during substorms
Abstract: The Van-Allen probes, low-altitude NOAA satellite, MetOp satellite and riometer are used to analyze variations of precipitating energetic electron fluxes and cosmic radio noise absorption (CNA) driven by plasmaspheric hiss with respect to geomagnetic activities. The hiss-driven energetic electron precipitations (at L~4.7-5.3, MLT~8-9) are observed during geomagnetic quiet condition and substorms, respectively. We find that the CNA detected by riometers increased very little in the hiss-driven event during quiet condition on September 06, 2012. The hiss-driven enhancement of riometer was still little during the first substorm on September 30, 2012. However, the absorption detected by the riometer largely increased while the energies of the injected electrons became higher during the second . . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021113 Available at:
More Details
Authors: Li W, and Hudson M.K.
Title: Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era
Abstract: Discovery of the Earth's Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scattering. This scattering lowers the mirror altitude for particles in their bounce motion parallel to the Earth's magnetic field until they suffer collisional loss. A view of the belts as quasi‐static inner and outer zones of energetic particles with different sources was modified by ob. . .
Date: 11/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025940 Available at:
More Details
Authors: Li Zhao, Hudson Mary, Paral Jan, Wiltberger Michael, and Turner Drew
Title: Global ULF wave analysis of radial diffusion coefficients using a global MHD model for the 17 March 2015 storm
Abstract: The 17–18 March 2015 storm is the largest geomagnetic storm in the Van Allen Probes era to date. The Lyon-Fedder-Mobarry global MHD model has been run for this event using ARTEMIS data as solar wind input. The ULF wave power spectral density of the azimuthal electric field and compressional magnetic field is analyzed in the 0.5–8.3 mHz range. The lowest three azimuthal modes account for 70% of the total power during quiet times. However, during high activity, they are not exclusively dominant. The calculation of the radial diffusion coefficient is presented. We conclude that the electric field radial diffusion coefficient is dominant over the magnetic field coefficient by one to two orders of magnitude. This result contrasts with the dominant magnetic field diffusion coefficient used i. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022508 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, Thorne Richard M, Li Wen, Ma Qianli, et al.
Title: Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves
Abstract: The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6–3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron b. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 3212 - 3222 DOI: 10.1002/2016JA022370 Available at:
More Details
Authors: Li Zhao, Hudson Mary, and Chen Yue
Title: Radial diffusion comparing a THEMIS statistical model with geosynchronous measurements as input
Abstract: The outer boundary energetic electron flux is used as a driver in radial diffusion calculations, and its precise determination is critical to the solution. A new model was proposed recently based on Time History of Events and Macroscale Interactions during Substorms (THEMIS) measurements to express the boundary flux as three fit functions of solar wind parameters in a response window that depend on energy and which solar wind parameter is used: speed, density, or both. The Dartmouth radial diffusion model has been run using Los Alamos National Laboratory (LANL) geosynchronous satellite measurements as the constraint for a one-month interval in July to August 2004, and the calculated phase space density (PSD) is compared with GPS measurements, at magnetic equatorial plane crossings, as a te. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1863 - 1873 DOI: 10.1002/jgra.v119.310.1002/2013JA019320 Available at:
More Details
Authors: Li L.Y., Yang S.S., Cao J.B., Yu J., Luo X.Y., et al.
Title: Effects of Solar Wind Plasma Flow and Interplanetary Magnetic Field on the Spatial Structure of Earth's Radiation Belts
Abstract: Based on the statistical data measured by Van Allen Probes from 2012 to 2016, we analyzed the effects of solar wind plasma flow and interplanetary magnetic field (IMF) on the spatial distribution of Earth's radiation belt electrons (>100 keV). The statistical results indicate that the increases in solar wind plasma density and flow speed can exert different effects on the spatial structure of the radiation belts. The high solar wind plasma density (>6 cm−3)/flow pressure (>2.5 nPa) and a large southward IMF (Bz < −6 nT) usually appear in the front of high‐speed solar wind streams (> 450 km/s), and they tend to narrow the outer radiation belt but broaden the slot region. In contrast, the increase in solar wind flow speed can broaden the outer radiation belt but narrows the slot region. . .
Date: 12/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 10332 - 10344 DOI: 10.1029/2019JA027284 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, Li Wen, Thorne Richard M., Ma Qianli, et al.
Title: Coherently modulated whistler mode waves simultaneously observed over unexpectedly large spatial scales
Abstract: Utilizing simultaneous twin Van Allen Probes observations of whistler mode waves at variable separations, we are able to distinguish the temporal variations from spatial variations, determine the coherence spatial scale, and suggest the possible mechanism of wave modulation. The two probes observed coherently modulated whistler mode waves simultaneously at an unexpectedly large distance up to ~4.3 RE over 3 h during a relatively quiet period. The modulation of 150–500 Hz plasmaspheric hiss was correlated with whistler mode waves measured outside the plasmasphere across 3 h in magnetic local time and 3 L shells, revealing that the modulation was temporal in nature. We suggest that the coherent modulation of whistler mode waves was associated with the coherent ULF waves measured ov. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023706 Available at:
More Details
Authors: Li Xinlin, Roth I, Temerin M, Wygant J R, Hudson M K, et al.
Title: Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC
Abstract: We model the rapid (∼ 1 min) formation of a new electron radiation belt at L ≃ 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, we represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth's magnetic field. We follow the electrons using a relativistic guiding center code. The test-particle simulations show that electrons with energies of a few MeV at L > 6 were energized up to 40 MeV and transported to L ≃ 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the el. . .
Date: 11/1993 Publisher: Geophysical Research Letters Pages: 2423–2426 DOI: 10.1029/93GL02701 Available at:
More Details
Authors: Li L. Y., Yu J., Cao J. B., Yang J. Y., Li X, et al.
Title: Roles of whistler-mode waves and magnetosonic waves in changing the outer radiation belt and the slot region
Abstract: Using the Van Allen Probe long-term (2013 – 2015) observations and quasi-linear simulations of wave-particle interactions, we examine the combined or competing effects of whistler-mode waves (chorus or hiss) and magnetosonic (MS) waves on energetic (<0.5 MeV) and relativistic (>0.5 MeV) electrons inside and outside the plasmasphere. Although whistler-mode chorus waves and MS waves can singly or jointly accelerate electrons from the hundreds of keV energy to the MeV energy in the low-density trough, most of the relativistic electron enhancement events are best correlated with the chorus wave emissions outside the plasmapause. Inside the plasmasphere, intense plasmaspheric hiss can cause the net loss of relativistic electrons via persistent pitch angle scattering, regardless of whether. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023634 Available at:
More Details
Authors: Li Zhao, Hudson Mary, Kress Brian, and Paral Jan
Title: 3D test-particle simulation of the 17-18 March, 2013 CME-shock driven storm
Abstract: D test-particle simulation of energetic electrons (hundreds of keV to MeV), including both an initially trapped population and continuously injected population, driven by the Lyon-Fedder-Mobarry (LFM) global MHD model coupled with Magnetosphere-Ionosphere Coupler/Solver (MIX) boundary conditions, is performed for the March 17, 2013 storm. The electron trajectories are calculated and weighted using the ESA model for electron flux vs. energy and L. The simulation captures the flux dropout at both GOES-13 and GOES-15 locations after a strong CME-shock arrival which produced a Dst=−132 nT storm, and recovery to the pre-storm value later, consistent with GOES satellite measurements. This study provides the first 3D test-particle simulation combining the trapped and injected populations. The r. . .
Date: 06/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064627 Available at:
More Details
Authors: Li J., Bortnik J., Li W., Ma Q., Thorne R. M., et al.
Title: “Zipper-like” periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations
Abstract: An interesting form of “zipper-like” magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single source intrinsically. In one event, the zipper-like magnetosonic waves exhibit the same periodicity as a constant-frequency magnetosonic wave and an electrostatic emission, but the modulation comes from neither density fluctuations nor ULF waves. A statistical survey based on 3.5 years of multisat. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023536 Available at:
More Details
Authors: Li W, Shen X.‐C., Ma Q, Capannolo L., Shi R., et al.
Title: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss
Abstract: Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scatter. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3615 - 3624 DOI: 10.1029/2019GL082095 Available at:
More Details
Authors: Li Zhao, Hudson Mary, Jaynes Allison, Boyd Alexander, Malaspina David, et al.
Title: Modeling Gradual Diffusion Changes in Radiation Belt Electron Phase Space Density for the March 2013 Van Allen Probes Case Study
Abstract: March 2013 provided the first equinoctial period when all of the instruments on the Van Allen Probes spacecraft were fully operational. This interval was characterized by disturbances of outer zone electrons with two timescales of variation, diffusive and rapid dropout and restoration [Baker et al., 2014]. A radial diffusion model was applied to the month-long interval to confirm that electron phase space density is well described by radial diffusion for the whole month at low first invariant ≤400 MeV/G, but peaks in phase space density observed by the ECT instrument suite at higher first invariant are not reproduced by radial transport from a source at higher L. The model does well for much of the month-long interval, capturing three of four enhancements in phase space density which e. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020359 Available at:
More Details
Authors: Li W, Ni B, Thorne R M, Bortnik J, Nishimura Y., et al.
Title: Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis
Abstract: We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100–300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially pr. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1085 - 1092 DOI: 10.1002/2013GL059132 Available at:
More Details
Authors: Li W, Shprits Y Y, and Thorne R M
Title: Dynamic evolution of energetic outer zone electrons due to wave-particle interactions during storms
Abstract: [1] Relativistic electrons in the outer radiation belt are subjected to pitch angle and energy diffusion by chorus, electromagnetic ion cyclotron (EMIC), and hiss waves. Using quasi-linear diffusion coefficients for cyclotron resonance with field-aligned waves, we examine whether the resonant interactions with chorus waves produce a net acceleration or loss of relativistic electrons. We also examine the effect of pitch angle scattering by EMIC and hiss waves during the main and recovery phases of a storm. The numerical simulations show that wave-particle interactions with whistler mode chorus waves with realistic wave spectral properties result in a net acceleration of relativistic electrons, while EMIC waves, which provide very fast scattering near the edge of the loss cone, may be a domi. . .
Date: 10/2007 Publisher: Journal of Geophysical Research DOI: 10.1029/2007JA012368 Available at:
More Details
Authors: Li Jinxing, Bortnik Jacob, An Xin, Li Wen, Thorne Richard M, et al.
Title: Chorus Wave Modulation of Langmuir Waves in the Radiation Belts
Abstract: Using high-resolution waveforms measured by the Van Allen Probes, we report a novel observation in the radiation belts. Namely, we show that multiband, discrete, rising-tone whistler mode chorus emissions exhibit a one-to-one correlation with Langmuir wave bursts. Moreover, the periodic Langmuir wave bursts are generally observed at the phase location where the chorus wave E|| component is oriented opposite to its propagation direction. The electron measurements show a beam in phase space density at the particle velocity that matches the parallel phase velocity of the chorus waves. Based on this evidence, we conclude that the chorus waves accelerate the suprathermal electrons via Landau resonance and generate a localized electron beam in phase space density. Consequently, the Langmuir wave. . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,713 - 11,721 DOI: 10.1002/2017GL075877 Available at:
More Details
Authors: Li W, Thorne R M, Ma Q, Ni B, Bortnik J, et al.
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiati. . .
Date: 06/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 4681 - 4693 DOI: 10.1002/jgra.v119.610.1002/2014JA019945 Available at:
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Zhang X.-J., et al.
Title: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations
Abstract: Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak loca. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5520 - 5536 DOI: 10.1002/jgra.v121.610.1002/2016JA022400 Available at:
More Details
Authors: Li W, Mourenas D., Artemyev A., Agapitov O., Bortnik J, et al.
Title: Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves
Abstract: Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30–100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This . . .
Date: 08/2014 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2014GL061260 Available at:
More Details
Authors: Li Zan, Millan Robyn M., Hudson Mary K, Woodger Leslie A., Smith David M., et al.
Title: Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations
Abstract: Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We show that the count rate, the energy distribution and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062273 Available at:
More Details
Authors: Li W, Santolik O, Bortnik J, Thorne R M, Kletzing C A, et al.
Title: New Chorus Wave Properties Near the Equator from Van Allen Probes Wave Observations
Abstract: The chorus wave properties are evaluated using Van Allen Probes data in the Earth's equatorial magnetosphere. Two distinct modes of lower band chorus are identified: a quasi-parallel mode and a quasi-electrostatic mode, whose wave normal direction is close to the resonance cone. Statistical results indicate that the quasi-electrostatic (quasi-parallel) mode preferentially occurs during relatively quiet (disturbed) geomagnetic activity at lower (higher) L shells. Although the magnetic intensity of the quasi-electrostatic mode is considerably weaker than the quasi-parallel mode, their electric intensities are comparable. A newly identified feature of the quasi-electrostatic mode is that its frequency peaks at higher values compared to the quasi-parallel mode that exhibits a broad frequency s. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068780 Available at:
More Details
Authors: Li Li, Zhou Xu-Zhi, Omura Yoshiharu, Wang Zi-Han, Zong Qiu-Gang, et al.
Title: Nonlinear drift resonance between charged particles and ultra-low frequency waves: Theory and Observations
Abstract: In Earth's inner magnetosphere, electromagnetic waves in the ultra‐low frequency (ULF) range play an important role in accelerating and diffusing charged particles via drift resonance. In conventional drift‐resonance theory, linearization is applied under the assumption of weak wave‐particle energy exchange so particle trajectories are unperturbed. For ULF waves with larger amplitudes and/or durations, however, the conventional theory becomes inaccurate since particle trajectories are strongly perturbed. Here, we extend the drift‐resonance theory into a nonlinear regime, to formulate nonlinear trapping of particles in a wave‐carried potential well, and predict the corresponding observable signatures such as rolled‐up structures in particle energy spectrum. After considering how. . .
Date: 08/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079038 Available at:
More Details