Biblio

Found 457 results
Filters: First Letter Of Last Name is L  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Authors: Cao Xing, Ni Binbin, Summers Danny, Shprits Yuri Y, Gu Xudong, et al.
Title: Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution
Abstract: Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field‐aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of ≤10 keV protons. For >10 keV protons, the field‐aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Ou. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 590 - 598 DOI: 10.1029/2018GL081550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081550
More Details
Authors: Liu Nigang, Su Zhenpeng, Gao Zhonglei, Reeves G D, Zheng Huinan, et al.
Title: Shock-induced disappearance and subsequent recovery of plasmaspheric hiss: Coordinated observations of RBSP, THEMIS and POES satellites
Abstract: Plasmaspheric hiss is an extremely low frequency whistler-mode emission contributing significantly to the loss of radiation belt electrons. There are two main competing mechanisms for the generation of plasmaspheric hiss: excitation by local instability in the outer plasmasphere and origination from chorus outside the plasmasphere. Here, on the basis of the analysis of an event of shock-induced disappearance and subsequent recovery of plasmaspheric hiss observed by RBSP, THEMIS and POES missions, we attempt to identify its dominant generation mechanism. In the pre-shock plasmasphere, the local electron instability was relatively weak and the hiss waves with bidirectional Poynting fluxes mainly originated from the dayside chorus waves. On arrival of the shock, the removal of pre-existing da. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024470 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024470/full
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Shorting Factor In‐Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth's Plasmasphere
Abstract: Satellite‐based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In‐flight calibration of double‐probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly . . .
Date: 04/2019 Publisher: Earth and Space Science Pages: 646 - 654 DOI: 10.1029/2018EA000550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018EA000550
More Details
Authors: Hudson Mary, Jaynes Allison, Kress Brian, Li Zhao, Patel Maulik, et al.
Title: Simulated prompt acceleration of multi-MeV electrons by the 17 March 2015 interplanetary shock
Abstract: Prompt enhancement of relativistic electron flux at L = 3−5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by ∼ 1 MeV is inferred on less than a drift time scale as seen in prior shock compression events, which launch a magetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift resonance at the dusk flank. Such longitudinally localized acceleration events produce a drift echo signature which was seen at >1 MeV energy on both Van Allen Probe spacecraft, with sustained observations by Probe B outbound at L = 5 at 2100 MLT at the time of impuls. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024445 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024445/full
More Details
Authors: Sarris T, Li X, and Temerin M
Title: Simulating radial diffusion of energetic (MeV) electrons through a model of fluctuating electric and magnetic fields
Abstract: In the present work, a test particle simulation is performed in a model of analytic Ultra Low Frequency, ULF, perturbations in the electric and magnetic fields of the Earth's magnetosphere. The goal of this work is to examine if the radial transport of energetic particles in quiet-time ULF magnetospheric perturbations of various azimuthal mode numbers can be described as a diffusive process and be approximated by theoretically derived radial diffusion coefficients. In the model realistic compressional electromagnetic field perturbations are constructed by a superposition of a large number of propagating electric and consistent magnetic pulses. The diffusion rates of the electrons under the effect of the fluctuating fields are calculated numerically through the test-particle simulation as a. . .
Date: 10/2006 Publisher: Annales Geophysicae Pages: 2583 - 2598 DOI: 10.5194/angeo-24-2583-2006 Available at: http://www.ann-geophys.net/24/2583/2006/angeo-24-2583-2006.html
More Details
Authors: Ma Q, Li W, Thorne R M, Nishimura Y., Zhang X.-J., et al.
Title: Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Abstract: The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetra. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022507 Available at: http://doi.wiley.com/10.1002/2016JA022507
More Details
Authors: Patel Maulik, Li Zhao, Hudson Mary, Claudepierre Seth, and Wygant John
Title: Simulation of Prompt Acceleration of Radiation Belt Electrons During the 16 July 2017 Storm
Abstract: We investigate the prompt enhancement of radiation belt electron flux observed by the Relativistic Electron Proton Telescope instrument on board Van Allen Probes following the 16 July 2017 CME‐shock compression using MHD‐test particle simulations. The prompt enhancements can be explained by the source population interacting with the azimuthally directed electric field impulses induced by CME‐shock compressions of the dayside magnetopause. Electrons in drift resonance with the electric field impulse were accelerated by ∼ 0.6 MeV on a drift period timescale (in minutes) as the impulse propagated from the dayside to the nightside around the flanks of the magnetosphere. MHD test particle simulation of energization and drift phase bunching, due to the bipolar electric field that accompa. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083257
More Details
Authors: Burch L, Carovillano L, Antiochos K, Hudson M K, Elkington S R, et al.
Title: Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations
Abstract: The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relativistic electron flux increase occurred over several hours for the January event, during a period of prolonged southward IMF Bz more rapidly than the 1-2 day delay typical of flux increases driven by solar wind high speed stream interactions. Simulations of th. . .
Date: Publisher: American Geophysical Union Pages: 171 - 182 DOI: 10.1029/GM10910.1029/GM109p0171 Available at: http://onlinelibrary.wiley.com/doi/10.1029/GM109p0171/summary
More Details
Authors: Li Xinlin, Roth I, Temerin M, Wygant J R, Hudson M K, et al.
Title: Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC
Abstract: We model the rapid (∼ 1 min) formation of a new electron radiation belt at L ≃ 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, we represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earth's magnetic field. We follow the electrons using a relativistic guiding center code. The test-particle simulations show that electrons with energies of a few MeV at L > 6 were energized up to 40 MeV and transported to L ≃ 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the el. . .
Date: 11/1993 Publisher: Geophysical Research Letters Pages: 2423–2426 DOI: 10.1029/93GL02701 Available at: http://onlinelibrary.wiley.com/doi/10.1029/93GL02701/abstract
More Details
Authors: Goldstein J, De Pascuale S., Kletzing C., Kurth W., Genestreti K. J., et al.
Title: Simulation of Van Allen Probes Plasmapause Encounters
Abstract: We use an E × B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (RBSP) during 15–20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP data. Virtual RBSP satellites recorded 28 virtual plasmapause encounters during 15–19 January. For 26 of 28 (92%) virtual crossings, there were corresponding actual RBSP encounters with plasmapause density gradients. The mean difference in encounter time between model and data is. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020252 Available at: http://doi.wiley.com/10.1002/2014JA020252
More Details
Authors: Eshetu W. W., Lyon J G, Hudson M K, and Wiltberger M. J.
Title: Simulations of Electron Energization and Injection by BBFs Using High-Resolution LFM MHD Fields
Abstract: We study electron injection and energization by bursty bulk flows (BBFs), by tracing electron trajectories using magnetohydrodynamic (MHD) field output from the Lyon‐Fedder‐Mobarry (LFM) code. The LFM MHD simulations were performed using idealized solar wind conditions to produce BBFs. We show that BBFs can inject energetic electrons of few to 100 keV from the magnetotatail beyond −24 RE to inward of geosynchronous, while accelerating them in the process. We also show the dependence of energization and injection on the initial relative position of the electrons to the magnetic field structure of the BBF, the initial pitch angle, and the initial energy. In addition, we have shown that the process can be nonadiabatic with violation of the first adiabatic invariant (μ). Further, we d. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JA025789
More Details
Authors: Liu Nigang, Su Zhenpeng, Gao Zhonglei, Zheng Huinan, Wang Yuming, et al.
Title: Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure
Abstract: Magnetospheric whistler mode waves are of great importance in the radiation belt electron dynamics. Here on the basis of the analysis of a rare event with the simultaneous disappearances of whistler mode plasmaspheric hiss, exohiss, and chorus triggered by a sudden decrease in the solar wind dynamic pressure, we provide evidences for the following physical scenarios: (1) nonlinear generation of chorus controlled by the geomagnetic field inhomogeneity, (2) origination of plasmaspheric hiss from chorus, and (3) leakage of plasmaspheric hiss into exohiss. Following the reduction of the solar wind dynamic pressure, the dayside geomagnetic field configuration with the enhanced inhomogeneity became unfavorable for the generation of chorus, and the quenching of chorus directly caused the disappea. . .
Date: 01/2017 Publisher: Geophysical Research Letters Pages: 52 - 61 DOI: 10.1002/2016GL071987 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071987/full
More Details
Authors: Schiller Q., Tu W., Ali A. F., Li X, Godinez H. C., et al.
Title: Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons
Abstract: The most significant unknown regarding relativistic electrons in Earth's outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13–14 January 2013 enhancement event to isolate transport,. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023093 Available at: http://doi.wiley.com/10.1002/2016JA023093
More Details
Authors: Ghamry E., Kim K.-H., Kwon H.-J., Lee D.-H., Park J.-S., et al.
Title: Simultaneous Pi2 observations by the Van Allen Probes inside and outside the plasmasphere
Abstract: Plasmaspheric virtual resonance (PVR) model has been proposed as one of source mechanisms for low-latitude Pi2 pulsations. Since PVR-associated Pi2 pulsations are not localized inside the plasmasphere, simultaneous multipoint observations inside and outside the plasmasphere require to test the PVR model. Until now, however, there are few studies using simultaneous multisatellite observations inside and outside the plasmasphere for understanding the radial structure of Pi2 pulsation. In this study, we focus on the Pi2 event observed at low-latitude Bohyun (BOH, L = 1.35) ground station in South Korea in the postmidnight sector (magnetic local time (MLT) = 3.0) for the interval from 1730 to 1900 UT on 12 March 2013. By using electron density derived from the frequency of the upper hybrid wav. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021095 Available at: http://doi.wiley.com/10.1002/2015JA021095
More Details
Authors: Lessard Marc R., Lindgren Erik A., Engebretson Mark J, and Weaver Carol
Title: Solar cycle dependence of ion cyclotron wave frequencies
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020791 Available at: http://doi.wiley.com/10.1002/2014JA020791
More Details
Authors: Lessard Marc R., Lindgren Erik A., Engebretson Mark J, and Weaver Carol
Title: Solar cycle dependence of ion cyclotron wave frequencies
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been studied for decades, though remain a fundamentally important topic in heliospheric physics. The connection of EMIC waves to the scattering of energetic particles from Earth's radiation belts is one ofmany topics that motivate the need for a deeper understanding of characteristics and occurrence distributions of the waves. In this study, we show that EMIC wave frequencies, as observed at Halley Station in Antarctica from 2008 through 2012, increase by approximately 60% from a minimum in 2009 to the end of 2012. Assuming that these waves are excited in the vicinity of the plasmapause, the change in Kp in going from solar minimum to near solar maximum would drive increased plasmapause erosion, potentially shifting the generation region of t. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020791 Available at: http://doi.wiley.com/10.1002/2014JA020791
More Details
Authors: O'Brien T P, Mazur J E, and Looper M D
Title: Solar Energetic Proton Access to the Magnetosphere During the 10–14 September 2017 Particle Event
Abstract: We explore the penetration of >60 MeV protons into the magnetosphere during the 10–14 September 2017 solar energetic particle event. Solar energetic particles can cause single event effects and total dose degradation in spacecraft electronics. Therefore, it is important for satellite anomaly analysis to understand how deep into the magnetosphere these particles penetrate. Whereas most studies of geomagnetic cutoffs use low‐altitude data, we use data from the Relativistic Proton Spectrometer on National Aeronautics and Space Administration's Van Allen Probes, which is in a high‐altitude, elliptical orbit. We determine how the penetration depends on particle energy, location, and direction of incidence. We evaluate multiple published models of the geomagnetic cutoff to determine how we. . .
Date: 08/2018 Publisher: Space Weather DOI: 10.1029/2018SW001960 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW001960
More Details
Authors: Li W, Thorne R M, Bortnik J, Baker D N, Reeves G D, et al.
Title: Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis
Abstract: Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and . . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065342 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL065342/abstract
More Details
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at: http://doi.wiley.com/10.1002/2015JA021234
More Details
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at: http://doi.wiley.com/10.1002/2015JA021234
More Details
Authors: Jaynes A.N., Baker D.N., Singer H.J., Rodriguez J.V., Loto'aniu T.M., et al.
Title: Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes
Abstract: Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021234 Available at: http://doi.wiley.com/10.1002/2015JA021234
More Details
Authors: Wang Chih-Ping, Xing Xiaoyan, Nakamura T. K. M., Lyons Larry R., and Angelopoulos Vassilis
Title: Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS
Abstract: Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020603 Available at: http://doi.wiley.com/10.1002/2014JA020603
More Details
Authors: Lanzerotti Louis J.
Title: Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s
Abstract: Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026763 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JA026763
More Details
Authors: Lee Jongkil, Kim Kyung-Chan, Giuseppe Romeo, Ukhorskiy Sasha, Sibeck David, et al.
Title: Space Weather Operation at KASI with Van Allen Probes Beacon Signals
Abstract: The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron fl. . .
Date: 01/2018 Publisher: Space Weather DOI: 10.1002/2017SW001726 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001726/full
More Details
Authors: Lee Jongkil, Kim Kyung-Chan, Giuseppe Romeo, Ukhorskiy Sasha, Sibeck David, et al.
Title: Space Weather Operation at KASI with Van Allen Probes Beacon Signals
Abstract: The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron fl. . .
Date: 01/2018 Publisher: Space Weather DOI: 10.1002/2017SW001726 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001726/full
More Details
Authors: Lee Jongkil, Kim Kyung-Chan, Giuseppe Romeo, Ukhorskiy Sasha, Sibeck David, et al.
Title: Space Weather Operation at KASI with Van Allen Probes Beacon Signals
Abstract: The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron fl. . .
Date: 01/2018 Publisher: Space Weather DOI: 10.1002/2017SW001726 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001726/full
More Details
Authors: Lanzerotti Louis J., and Baker Daniel N
Title: Space Weather Research: Earth's Radiation Belts
Abstract: Fundamental research on Earth's space radiation environment is essential for the design and the operations of modern technologies – for communications, weather, navigation, national security – that fly in the hostile space weather conditions above Earth's atmosphere. As the technologies become ever more advanced, more sophisticated understanding – and even predictability – of the environment is required for mission success
Date: 05/2017 Publisher: Space Weather DOI: 10.1002/2017SW001654 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001654/full
More Details
Authors: Lesley Mellinee
Title: “Spacecraft Reveals Recent Geological Activity on the Moon”
Abstract: Through a content analysis of 200 “tweets,” this study was an exploration into the distinct features of text posted to NASA's Twitter site and the potential for these posts to serve as more engaging scientific text than traditional textbooks for adolescents. Results of the content analysis indicated the tweets and linked texts on the NASA Twitter site were constructed primarily as a form of “adapted primary literature” where science texts created by scientists for other scientists are presented in a slightly modified format for the general public. Further, the content analysis revealed the majority of text posted was designed to cultivate scientific knowledge for novices. Findings of the content analysis are presented and implications for teaching scientific literacies to adolescen. . .
Date: 02/2014 Publisher: Journal of Adolescent & Adult Literacy Pages: 377 - 385 DOI: 10.1002/jaal.2014.57.issue-510.1002/jaal.258 Available at: http://doi.wiley.com/10.1002/jaal.2014.57.issue-5http://doi.wiley.com/10.1002/jaal.258
More Details
Authors: Sarno-Smith Lois K., Larsen Brian A., Skoug Ruth M., Liemohn Michael W., Breneman Aaron, et al.
Title: Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes
Abstract: Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV. It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examin. . .
Date: 02/2016 Publisher: Space Weather Pages: n/a - n/a DOI: 10.1002/2015SW001345 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015SW001345/full
More Details
Authors: Sarno-Smith Lois K., Larsen Brian A., Skoug Ruth M., Liemohn Michael W., Breneman Aaron, et al.
Title: Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes
Abstract: Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV. It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examin. . .
Date: 02/2016 Publisher: Space Weather Pages: n/a - n/a DOI: 10.1002/2015SW001345 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015SW001345/full
More Details
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Kim H., Choi C. R., et al.
Title: Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements
Abstract: In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023827 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023827/full
More Details
Authors: Cho J.-H., Lee D.-Y., Noh S.-J., Kim H., Choi C. R., et al.
Title: Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements
Abstract: In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globally but not necessarily everywhere) but with different wave properties. For Event 1, three satellites situated at a nearly same dawnside zone but at slightly different L shells see occurrence of EMIC waves but in different frequencies relative to local ion gyrofrequencies. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023827 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023827/full
More Details
Authors: Gkioulidou Matina, Ohtani S, Mitchell D G, Ukhorskiy A., Reeves G D, et al.
Title: Spatial structure and temporal evolution of energetic particle injections in the inner magnetosphere during the 14 July 2013 substorm event.
Abstract: Recent results by the Van Allen Probes mission showed that the occurrence of energetic ion injections inside geosynchronous orbit could be very frequent throughout the main phase of a geomagnetic storm. Understanding, therefore, the formation and evolution of energetic particle injections is critical in order to quantify their effect in the inner magnetosphere. We present a case study of a substorm event that occurred during a weak storm (Dst ~ - 40 nT) on 14 July 2013. Van Allen Probe B, inside geosynchronous orbit, observed two energetic proton injections within ten minutes, with different dipolarization signatures and duration. The first one is a dispersionless, short timescale injection pulse accompanied by a sharp dipolarization signature, while the second one is a dispersed, longer t. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020872 Available at: http://doi.wiley.com/10.1002/2014JA020872
More Details
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083118
More Details
Authors: Wang Dedong, Yuan Zhigang, Yu Xiongdong, Deng Xiaohua, Zhou Meng, et al.
Title: Statistical characteristic of EMIC waves: Van Allen Probe observations
Abstract: Utilizing the data from the magnetometer instrument which is a part of the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument suite onboard the Van Allen Probe A from Sep. 2012 to Apr. 2014, when the apogee of the satellite has passed all the MLT sectors, we obtain the statistical distribution characteristic of EMIC waves in the inner magnetosphere over all local times from L=3 to L=6. Compared with the previous statistical results about EMIC waves, the occurrence rates of EMIC waves distribute relatively uniform in the MLT sectors in lower L-shells. On the other hand, in higher L-shells, there are indeed some peaks of the occurrence rate for the EMIC waves, especially in the noon, dusk and night sectors. EMIC waves appear at lower L-shells in the dawn. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021089 Available at: http://doi.wiley.com/10.1002/2015JA021089
More Details
Authors: Zhang X.-J., Li W, Thorne R M, Angelopoulos V, Bortnik J, et al.
Title: Statistical distribution of EMIC wave spectra: Observations from Van Allen Probes
Abstract: It has been known that electromagnetic ion cyclotron (EMIC) waves can precipitate ultrarelativistic electrons through cyclotron resonant scattering. However, the overall effectiveness of this mechanism has yet to be quantified, because it is difficult to obtain the global distribution of EMIC waves that usually exhibit limited spatial presence. We construct a statistical distribution of EMIC wave frequency spectra and their intensities based on Van Allen Probes measurements from September 2012 to December 2015. Our results show that as the ratio of plasma frequency over electron gyrofrequency increases, EMIC wave power becomes progressively dominated by the helium band. There is a pronounced dawn-dusk asymmetry in the wave amplitude and the frequency spectrum. The frequency spectrum does n. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071158 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071158/full
More Details
Authors: Zhang Wenxun, Ni Binbin, Huang He, Summers Danny, Fu Song, et al.
Title: Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons
Abstract: Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0–6.0 and MLT = 18–21, hiss emissions occur concurrently with a rate of >~80%. Plume hiss can efficiently scatter ~10‐ to 100‐keV electrons at rates up to ~10−4 s−1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons an. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL081863 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081863
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Kletzing C A, et al.
Title: Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics
Abstract: Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss . . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021048 Available at: http://doi.wiley.com/10.1002/2015JA021048
More Details
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
Authors: Jun C.-W., Yue C., Bortnik J, Lyons L R, Nishimura Y., et al.
Title: A Statistical Study of EMIC Waves Associated With and Without Energetic Particle Injection From the Magnetotail
Abstract: To understand the relationship between generation of electromagnetic ion cyclotron (EMIC) waves and energetic particle injections, we performed a statistical study of EMIC waves associated with and without injections based on the Van Allen Probes (Radiation Belt Storm Probes) and Geostationary Operational Environmental Satellite (GOES; GOES‐13 and GOES‐15) observations. Using 47 months of observations, we identified wave events seen by the Van Allen Probes relative to the plasmapause and to energetic particle injections seen by GOES‐13 and GOES‐15 on the nightside. We separated the events into four categories: EMIC waves with (without) injections inside (outside) the plasmasphere. We found that He+ EMIC waves have higher occurrence rate inside the plasmasphere, while H+ EMIC waves . . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 433 - 450 DOI: 10.1029/2018JA025886 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025886
More Details
Authors: Allen R. C., Zhang J. -C., Kistler L. M., Spence H E, Lin R. -L., et al.
Title: A statistical study of EMIC waves observed by Cluster: 1. Wave properties
Abstract: Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, as well as local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the MLT-L frame within a limited MLAT range. In this study, we present a statistical analysis of EMIC wave properties using ten years (2001–2010) of data from Cluster, totaling 25,431 minutes of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021333 Available at: http://doi.wiley.com/10.1002/2015JA021333
More Details
Authors: Shi Run, Summers Danny, Ni Binbin, Manweiler Jerry W., Mitchell Donald G., et al.
Title: A statistical study of proton pitch angle distributions measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)
Abstract: A statistical study of ring current-energy proton pitch angle distributions (PADs) in Earth's inner magnetosphere is reported here. The data are from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on board the Van Allen Probe B spacecraft from January 1, 2013 to April 15, 2015. By fitting the data to the functional form sinnα, where α is the proton pitch angle, we examine proton PADs at the energies 50, 100, 180, 328 and 488 keV in the L-shell range from L = 2.5 to L = 6. Three PAD types are classified: trapped (90° peaked), butterfly and isotropic. The proton PAD dependence on the particle energy, MLT, L-shell, and geomagnetic activity are analyzed in detail. The results show a strong dependence of the proton PADs on MLT. On the nightside, the n values o. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022140 Available at: http://doi.wiley.com/10.1002/2015JA022140
More Details
Authors: Mitani K., Seki K., Keika K, Gkioulidou M., Lanzerotti L J, et al.
Title: Statistical Study of Selective Oxygen Increase in High‐Energy Ring Current Ions During Magnetic Storms
Abstract: Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift‐bounce resonances with Pc 3–5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1–2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026168 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026168
More Details
Authors: Wang Hui, He Yangfan, ühr Hermann, Kistler Lynn, Saikin Anthony, et al.
Title: Storm Time EMIC Waves Observed by Swarm and Van Allen Probe Satellites
Abstract: The temporal and spatial evolution of electromagnetic ion cyclotron (EMIC) waves during the magnetic storm of 21–29 June 2015 was investigated using high‐resolution magnetic field observations from Swarm constellation in the ionosphere and Van Allen Probes in the magnetosphere. Magnetospheric EMIC waves had a maximum occurrence frequency in the afternoon sector and shifted equatorward during the expansion phase and poleward during the recovery phase. However, ionospheric waves in subauroral regions occurred more frequently in the nighttime than during the day and exhibited less obvious latitudinal movements. During the main phase, dayside EMIC waves occurred in both the ionosphere and magnetosphere in response to the dramatic increase in the solar wind dynamic pressure. Waves were abse. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 293 - 312 DOI: 10.1029/2018JA026299 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026299
More Details
Authors: Allen R. C., Livi S. A., Vines S. K., Goldstein J, Cohen I., et al.
Title: Storm time empirical model of O + and O 6+ distributions in the magnetosphere
Abstract: Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-order Fourier expansion model based empirically on a superposed epoch analysis of geomagnetic storms observed by Polar is presented in this study to provide insight into the evolution of both ionospheric-originating and solar wind-originating plasma throughout geomagnetic . . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024245 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024245/full
More Details
Authors: Keika Kunihiro, Seki Kanako, é Masahito, Machida Shinobu, Miyoshi Yoshizumi, et al.
Title: Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere
Abstract: We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22–23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7739 - 7752 DOI: 10.1002/2016JA022384 Available at: http://doi.wiley.com/10.1002/2016JA022384
More Details
Authors: Keika Kunihiro, Seki Kanako, é Masahito, Machida Shinobu, Miyoshi Yoshizumi, et al.
Title: Storm time impulsive enhancements of energetic oxygen due to adiabatic acceleration of preexisting warm oxygen in the inner magnetosphere
Abstract: We examine enhancements of energetic (>50 keV) oxygen ions observed by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board the Van Allen Probes spacecraft in the inner magnetosphere (L ~ 6) at 22–23 h magnetic local time (MLT) during an injection event of the 6 June 2013 storm. Simultaneous observations by two Van Allen Probes spacecraft located close together (~0.5 RE) indicate that particle injections occurred in the premidnight sector (< ~24 h MLT). We also examine the evolution of the proton and oxygen energy spectra at L ~ 6 during the injection event. The spectral slope did not significantly change during the storm. The oxygen phase space density (PSD) was shifted toward higher PSD in a wide range of the first adiabatic invariant. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7739 - 7752 DOI: 10.1002/2016JA022384 Available at: http://doi.wiley.com/10.1002/2016JA022384
More Details
Authors: Gkioulidou Matina, Ukhorskiy A., Mitchell D G, and Lanzerotti L J
Title: Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere
Abstract: Our investigation of the long-term ring current proton pressure evolution in Earth's inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to theSYM-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of SYM-H index, the high-energy component (>100 keV) varies on much longer timescales and shows either no correlation or anticorrelation with the absolute value of SYM-H index. Our study also shows that the contributions of the low- and high- energy protons to the inner magnetosphere energy content are comparable. Thus, our results c. . .
Date: 05/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL068013 Available at: http://doi.wiley.com/10.1002/2016GL068013
More Details
Authors: Gkioulidou Matina, Ukhorskiy A., Mitchell D G, and Lanzerotti L J
Title: Storm-time dynamics of ring current protons: Implications for the long-term energy budget in the inner magnetosphere
Abstract: Our investigation of the long-term ring current proton pressure evolution in Earth's inner magnetosphere based on Van Allen Probes data shows drastically different behavior of the low- and high- energy components of the ring current proton population with respect to the Sym-H index variation. We found that while the low-energy component of the protons (<80 keV) is strongly governed by convective timescales and is very well correlated with the absolute value of Sym-H index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the absolute value of Sym-H index. Our study also shows that the contributions of the low- and high- energy protons to the inner magnetosphere energy content are comparable. Thus, our results conclusivel. . .
Date: 03/2016 Publisher: Geophysical Research Letters Pages: n/a - n/a DOI: 10.1002/2016GL068013 Available at: http://doi.wiley.com/10.1002/2016GL068013http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016GL068013
More Details

Pages