Biblio

Found 3634 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
barrier
Authors: Foster J. C., Erickson P. J., Baker D N, Jaynes A. N., Mishin E. V., et al.
Title: Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm
Abstract: Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF transmitter signals extend beyond the eroded plasmapause, electron loss processes set up near the outer extent of the VLF bubble create an earthward limit to the region of local acceleration near L = 2.8 as MeV electrons are scattered into the atmospheric loss cone.
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5537 - 5548 DOI: 10.1002/jgra.v121.610.1002/2016JA022509 Available at: http://doi.wiley.com/10.1002/2016JA022509
More Details
BARREL, Van Allen Probes
Authors: Halford A J, McGregor S. L., Murphy K. R., Millan R M, Hudson M K, et al.
Title: BARREL observations of an ICME-Shock impact with the magnetosphere and the resultant radiation belt electron loss.
Abstract: The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) mission of opportunity working in tandem with the Van Allen Probes was designed to study the loss of radiation belt electrons to the ionosphere and upper atmosphere. BARREL is also sensitive to X-rays from other sources. During the second BARREL campaign the Sun produced an X-class flare followed by a solar energetic particle event (SEP) associated with the same active region. Two days later on 9 January 2014 the shock generated by the coronal mass ejection (CME) originating from the active region hit the Earth while BARREL was in a close conjunction with the Van Allen Probes. Time History Events and Macroscale Interactions during Substorms (THEMIS) observed the impact of the ICME-shock near the magnetopause, and th. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020873 Available at: http://doi.wiley.com/10.1002/2014JA020873
More Details
BARREL
Authors: Li Zan, Millan Robyn M., Hudson Mary K, Woodger Leslie A., Smith David M., et al.
Title: Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations
Abstract: Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We show that the count rate, the energy distribution and the time variation of the simulated precipitation all agree very well with the balloon observations, suggesting that EMIC wave scattering was likely the cause for the precipitation event. The event reported here is . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062273 Available at: http://doi.wiley.com/10.1002/2014GL062273
More Details
Authors: Zhang Jichun, Halford Alexa J., Saikin Anthony A., Huang Chia-Lin, Spence Harlan E., et al.
Title: EMIC waves and associated relativistic electron precipitation on 25-26 January 2013
Abstract: Using measurements from the Van Allen Probes and the Balloon Array for RBSP Relativistic Electron Losses (BARREL), we perform a case study of electromagnetic ion cyclotron (EMIC) waves and associated relativistic electron precipitation (REP) observed on 25–26 January 2013. Among all the EMIC wave and REP events from the two missions, the pair of the events is the closest both in space and time. The Van Allen Probe-B detected significant EMIC waves at L = 2.1–3.9 and magnetic local time (MLT) = 21.0–23.4 for 53.5 min from 2353:00 UT, 25 January 2013. Meanwhile, BARREL-1T observed clear precipitation of relativistic electrons at L = 4.2–4.3 and MLT = 20.7–20.8 for 10.0 min from 2358 UT, 25 January 2013. Local plasma and field conditions for the excitation of the. . .
Date: 10/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022918 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022918/full
More Details
Authors: Halford A J, McGregor S. L., Hudson M K, Millan R M, and Kress B T
Title: BARREL observations of a Solar Energetic Electron and Solar Energetic Proton event
Abstract: During the second Balloon Array for Radiation Belt Relativistic Electron Losses (BARREL) campaign two solar energetic proton (SEP) events were observed. Although BARREL was designed to observe X-rays created during electron precipitation events, it is sensitive to X-rays from other sources. The gamma lines produced when energetic protons hit the upper atmosphere are used in this paper to study SEP events. During the second SEP event starting on 7 January 2014 and lasting ∼ 3 days, which also had a solar energetic electron (SEE) event occurring simultaneously, BARREL had 6 payloads afloat spanning all MLT sectors and L-values. Three payloads were in a tight array (∼ 2 hrs in MLT and ∼ 2 Δ L) inside the inner magnetosphere and at times conjugate in both L and MLT with the Van Allen Pr. . .
Date: 04/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2016JA022462 Available at: http://doi.wiley.com/10.1002/2016JA022462http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016JA022462
More Details
bandwidth
Authors: Gao X., Li W, Thorne R M, Bortnik J, Angelopoulos V, et al.
Title: Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data
Abstract: The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. Th. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020158 Available at: http://doi.wiley.com/10.1002/2014JA020158
More Details
Banded whistler‐mode waves
Authors: Yu Xiongdong, Yuan Zhigang, Li Haimeng, Huang Shiyong, Wang Dedong, et al.
Title: Response of banded whistler-mode waves to the enhancement of solar wind dynamic pressure in the inner Earth's magnetosphere
Abstract: With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequency bands broadening could be locally excited by these hot electrons with increased anisotropy. The current study provides a great in situ evidence for the influence on frequencies of banded whistler waves by the enhancement of solar wind dynamic pressures, which reveals. . .
Date: Mar-08-2020 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078849 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078849
More Details
banded whistler waves
Authors: Teng S., Tao X., and Li W
Title: Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations
Abstract: Properties of banded, no‐gap, lower band only, and upper band only whistler mode waves (0.1–0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no‐gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no‐gap whistler waves peaks at magnetic latitude |MLAT|∼8–10°, while banded waves have higher occurrence rate near the equator for urn:x-wiley:grl:media:grl58818:grl58818-math-0001°. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no‐gap and banded whistler mode waves. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3607 - 3614 DOI: 10.1029/2019GL082161 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082161
More Details
banded chorus
Authors: Fu Xiangrong, Guo Zehua, Dong Chuanfei, and Gary Peter
Title: Nonlinear subcyclotron resonance as a formationmechanism for gaps in banded chorus
Abstract: An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω≃0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.
Date: 05/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064182 Available at: http://doi.wiley.com/10.1002/2015GL064182
More Details
Background contamination
Authors: Claudepierre S G, O'Brien T P, Blake J B, Fennell J. F., Roeder J. L., et al.
Title: A background correction algorithm for Van Allen Probes MagEIS electron flux measurements
Abstract: We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes MagEIS electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30-500 keV) and in regions of geospace where multi-MeV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background corrected MagEIS electron data produce a more accurate me. . .
Date: 06/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021171 Available at: http://doi.wiley.com/10.1002/2015JA021171
More Details
azimuthal wave number
Authors: Murphy Kyle R., Inglis Andrew R., Sibeck David G., Rae Jonathan, Watt Clare E. J., et al.
Title: Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm
Abstract: Ultra‐low frequency (ULF) waves play a fundamental role in the dynamics of the inner‐magnetosphere and outer radiation belt during geomagnetic storms. Broadband ULF wave power can transport energetic electrons via radial diffusion and discrete ULF wave power can energize electrons through a resonant interaction. Using observations from the Magnetospheric Multiscale (MMS) mission, we characterize the evolution of ULF waves during a high‐speed solar wind stream (HSS) and moderate geomagnetic storm while there is an enhancement of the outer radiation belt. The Automated Flare Inference of Oscillations (AFINO) code is used to distinguish discrete ULF wave power from broadband wave power during the HSS. During periods of discrete wave power and utilizing the close separation of the MMS sp. . .
Date: 05/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA024877 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA024877
More Details
Automated flight SW testing
Authors: Finnigan Jeremiah
Title: A scripting framework for automated flight SW testing: Van Allen Probes lessons learned
Abstract: This paper summarizes the lessons learned from implementing and utilizing an automated flight software test framework for the Van Allen Probes mission. This includes a recommended list of features/characteristics that a test framework should support. This paper also presents two test scripting design patterns that are useful for constructing an automated regression test suite. These design patterns are intended for non-object-oriented scripting environments - which is typical of space mission ground systems. A process flow is described for developing and utilizing an automated test scripting framework for future missions based upon the design patterns presented herein.
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836164 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836164
More Details
Automated flight software
Authors: Finnigan Jeremiah
Title: A scripting framework for automated flight SW testing: Van Allen Probes lessons learned
Abstract: This paper summarizes the lessons learned from implementing and utilizing an automated flight software test framework for the Van Allen Probes mission. This includes a recommended list of features/characteristics that a test framework should support. This paper also presents two test scripting design patterns that are useful for constructing an automated regression test suite. These design patterns are intended for non-object-oriented scripting environments - which is typical of space mission ground systems. A process flow is described for developing and utilizing an automated test scripting framework for future missions based upon the design patterns presented herein.
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836164 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836164
More Details
Auroral streamer
Authors: Yang Bing, Donovan Eric, Liang Jun, Ruohoniemi Michael, McWilliams Kathryn, et al.
Title: Storm-time convection dynamics viewed from optical auroras
Abstract: A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to ear. . .
Date: 10/2019 Publisher: Journal of Atmospheric and Solar-Terrestrial Physics Pages: 105088 DOI: 10.1016/j.jastp.2019.105088 Available at: https://www.sciencedirect.com/science/article/pii/S1364682619301129
More Details
auroral patch
Authors: Oyama S., Kero A., Rodger C. J., Clilverd M A, Miyoshi Y, et al.
Title: Energetic electron precipitation and auroral morphology at the substorm recovery phase
Abstract: It is well known that auroral patterns at the substorm recovery phase are characterized by diffuse or patch structures with intensity pulsation. According to satellite measurements and simulation studies, the precipitating electrons associated with these aurorae can reach or exceed energies of a few hundreds of keV through resonant wave-particle interactions in the magnetosphere. However, because of difficulty of simultaneous measurements, the dependency of energetic electron precipitation (EEP) on auroral morphological changes in the mesoscale has not been investigated to date. In order to study this dependency, we have analyzed data from the European Incoherent Scatter (EISCAT) radar, the Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) riometer, collocated cameras, ground-based m. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023484 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023484/full
More Details
Auroral kilometric radiation
Authors: Zhao Wanli, Liu Si, Zhang Sai, Zhou Qinghua, Yang Chang, et al.
Title: Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts
Abstract: Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to th. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083944
More Details
Auroral finger‐like structure
Authors: Nishi Katsuki, Shiokawa Kazuo, and Spence Harlan
Title: Magnetospheric source region of auroral finger-like structures observed by the RBSP-A satellite
Abstract: Auroral finger‐like structures appear equatorward of the auroral oval in the diffuse auroral region and contribute to the auroral fragmentation into patches. A previous report of the first conjugate observation of auroral finger‐like structures using a THEMIS GBO camera and the THEMIS‐E satellite at a radial distance of ∼8 RE showed anti‐phase oscillations of magnetic and plasma pressures in the dawnside plasma sheet. In the present study, we report another simultaneous observation of auroral finger‐like structures at Gillam, Canada at ∼0900 UT (0230 magnetic local time) on November 14, 2014 with the RBSP satellites at 5.8 RE in the inner magnetosphere. From this simultaneous observation event, we obtained the following observations. (1) Auroral finger‐like structures devel. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025480 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025480
More Details
aurora
Authors: Jaynes A. N., Lessard M. R., Takahashi K., Ali A. F., Malaspina D. M., et al.
Title: Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems
Abstract: Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10's keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with groun. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021380 Available at: http://doi.wiley.com/10.1002/2015JA021380
More Details
Authors: Schultz Colin
Title: Dynamics of the Earth's Radiation Belts and Inner Magnetosphere
Abstract: Trapped by Earth's magnetic field far above the planet's surface, the energetic particles that fill the radiation belts are a sign of the Sun's influence and a threat to our technological future. In the AGU monograph Dynamics of the Earth's Radiation Belts and Inner Magnetosphere, editors Danny Summers, Ian R. Mann, Daniel N. Baker, and Michael Schulz explore the inner workings of the magnetosphere. The book reviews current knowledge of the magnetosphere and recent research results and sets the stage for the work currently being done by NASA's Van Allen Probes (formerly known as the Radiation Belt Storm Probes). In this interview, Eos talks to Summers about magnetospheric research, whistler mode waves, solar storms, and the effects of the radiation belts on Earth.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 509 - 509 DOI: 10.1002/eost.v94.5210.1002/2013EO520007 Available at: http://doi.wiley.com/10.1002/eost.v94.52http://doi.wiley.com/10.1002/2013EO520007
More Details
Authors: Lyons L R, Nishimura Y., Gallardo-Lacourt B., Nicolls M. J., Chen S., et al.
Title: Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts
Abstract: We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021023 Available at: http://doi.wiley.com/10.1002/2015JA021023
More Details
Authors: Gao Zhonglei, Su Zhenpeng, Xiao Fuliang, Summers Danny, Liu Nigang, et al.
Title: Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere
Abstract: Electromagnetic whistler‐mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave‐particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum‐frequency and difference‐frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly‐generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH w. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080635 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080635
More Details
Authors: Chu Xiangning, Malaspina David, Gallardo‐Lacourt Bea, Liang Jun, Andersson Laila, et al.
Title: Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground
Abstract: The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes' footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline‐only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi‐static subauroral ion drift electric field and parallel‐accelerated electrons by kinetic Alfvén waves. These parallel electrons could precipitate and be accelerated via auroral accel. . .
Date: 11/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082789
More Details
Atmospheric waves
Authors: Thorne R M, Li W, Ma Q, Ni B, and Bortnik J
Title: Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm
Abstract: Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within ∼15 hours. A clear peak in electron phase space density observed at L∗ ∼ 4 indicates that the internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements by multiple POES satellites over a broad L-MLT region, which is used to simulate the radiation belt electron dynamics driven by chorus waves. Our. . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929882 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929882
More Details
Atmospheric sciences
Authors: Brito Thiago V.
Title: Precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere
Abstract: There is a renewed interest in the study of the radiation belts with the recent launch of the Van Allen Probes satellites. The mechanisms that drive the global response of the radiation belts to geomagnetic storms are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in 2D and 3D test particle simulations. In this study simulations were performed to investigate energization and loss of energetic radiation belt electrons. The response of the radiation belts to a CM. . .
Date: DOI: N/A Available at: http://search.proquest.com/docview/1611957223?accountid=27702
More Details
atmospheric precipitation
Authors: Hwang J., Choi E.-J., Park J.-S., Fok M.-C., Lee D.-Y., et al.
Title: Comprehensive analysis of the flux dropout during 7-8 November 2008 storm using multi-satellites observations and RBE model
Abstract: We investigate an electron flux dropout during a weak storm on 7–8 November 2008, with Dst minimum value being −37 nT. During this period, two clear dropouts were observed on GOES 11 > 2 MeV electrons. We also find a simultaneous dropout in the subrelativistic electrons recorded by Time History of Events and Macroscale Interactions during Substorms probes in the outer radiation belt. Using the Radiation Belt Environment model, we try to reproduce the observed dropout features in both relativistic and subrelativistic electrons. We found that there are local time dependences in the dropout for both observation and simulation in subrelativistic electrons: (1) particle loss begins from nightside and propagates into dayside and (2) resupply starts from near dawn magnetic local time . . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021085 Available at: http://doi.wiley.com/10.1002/2015JA021085
More Details
atmospheric measuring apparatus
Authors: Palo Scott E., Gerhardt David, Li Xinlin, Blum Lauren, Schiller Quintin, et al.
Title: One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)
Abstract: The Colorado Student Space Weather Experiment is a 3-unit (10cm × 10cm × 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 × 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928087 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928087
More Details
Atmospheric measurements
Authors: Santolik O, Hospodarsky G B, Kurth W S, Averkamp T. F., Kletzing C A, et al.
Title: Statistical properties of wave vector directions of whistler-mode waves in the radiation belts based on measurements of the Van Allen probes and Cluster missions
Abstract: Wave-particle interactions in the Earth's Van Allen radiation belts are known to be an efficient process of the exchange of energy between different particle populations, including the energetic radiation belt particles. The whistler mode waves, especially chorus, can control the radiation belt dynamics via linear or nonlinear interactions with both the energetic radiation belt electrons and lower energy electron populations. Wave vector directions are a very important parameter of these wave-particle interactions. We use measurements of whistlermode waves by the WAVES instrument from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) onboard the Van Allen Probes spacecraft covering the equatorial region of the Earth's magnetosphere in all MLT sectors, and a . . .
Date: 08/2014 Publisher: IEEE DOI: 10.1109/URSIGASS.2014.6929880 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929880
More Details
atmosphere oxygen
Authors: Bonnell John, and Lanzerotti Louis J.
Title: Neutral Oxygen Effects at Low Earth Altitudes: A Critical Uncertainty for Spacecraft Operations and Space Weather Effects
Abstract: Space Weather sits at the intersection of natural phenomena interacting with modern technology—either in space or on Earth's surface. A key aspect of space weather is the interaction of Earth's extended neutral atmosphere with satellite surfaces [e.g., Samwel, 2014, and references therein]. Because neutral oxygen causes spacecraft surface erosion and oxidation, detailed knowledge of the atmosphere below 1000 km is essential for spacecraft design and operations.
Date: 07/2015 Publisher: Space Weather DOI: 10.1002/2015SW001229 Available at: http://doi.wiley.com/10.1002/2015SW001229
More Details
Asymmetric electron acoustic double layers
Authors: Lotekar Ajay, Kakad Amar, and Kakad Bharati
Title: Formation of Asymmetric Electron Acoustic Double Layers in the Earth's Inner Magnetosphere
Abstract: The Van Allen Probes have observed both symmetric and asymmetric bipolar electric field structures in the Earth's inner magnetosphere. In general, the symmetric bipolar structures are identified as electron‐phase space holes, whereas the asymmetric structures are interpreted as electron acoustic double layers (EADLs). The generation mechanism of these EADLs is not entirely understood yet. We have modeled the EADLs observed on 13 November 2012 by Van Allen Probe‐B. We performed a fluid simulation of the EADLs and tracked their formation and evolution in the simulation. We found that the localized depletion and enhancement in the electron populations act as a perturbation to excite the symmetric bipolar electron acoustic solitary waves, which later evolve into the EADLs. The Ponderomotiv. . .
Date: 08/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 6896 - 6905 DOI: 10.1029/2018JA026303 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026303
More Details
Astrophysical plasmas
Authors: Mann I. R., Ozeke L. G., Murphy K. R., Claudepierre S G, Turner D. L., et al.
Title: Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt
Abstract: Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a datadriven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence o. . .
Date: 06/2016 Publisher: Nature Physics DOI: 10.1038/nphys3799 Available at: http://www.nature.com/doifinder/10.1038/nphys3799
More Details
Astronomy
Authors: Artemyev A.V., Agapitov O.V., Mourenas D., Krasnoselskikh V.V., and Mozer F.S.
Title: Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
Abstract: Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heat. . .
Date: 05/2015 Publisher: Nature Communications Pages: 8143 DOI: 10.1038/ncomms8143 Available at: http://www.nature.com/doifinder/10.1038/ncomms8143
More Details
Assessment
Authors: Posner A., Hesse M, and Cyr O. C. St.
Title: The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations
Abstract: Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not as. . .
Date: 04/2014 Publisher: Space Weather Pages: 257 - 276 DOI: 10.1002/swe.v12.410.1002/2013SW001007 Available at: http://doi.wiley.com/10.1002/swe.v12.4http://doi.wiley.com/10.1002/2013SW001007
More Details
artificial satellites
Authors: Palo Scott E., Gerhardt David, Li Xinlin, Blum Lauren, Schiller Quintin, et al.
Title: One year of on-orbit performance of the Colorado Student Space Weather Experiment (CSSWE)
Abstract: The Colorado Student Space Weather Experiment is a 3-unit (10cm × 10cm × 30cm) CubeSat funded by the National Science Foundation and constructed at the University of Colorado (CU). The CSSWE science instrument, the Relativistic Electron and Proton Telescope integrated little experiment (REPTile), provides directional differential flux measurements of 0.5 to >3.3 MeV electrons and 9 to 40 MeV protons. Though a collaboration of 60+ multidisciplinary graduate and undergraduate students working with CU professors and engineers at the Laboratory for Atmospheric and Space Physics (LASP), CSSWE was designed, built, tested, and delivered in 3 years. On September 13, 2012, CSSWE was inserted to a 477 × 780 km, 65° orbit as a secondary payload on an Atlas V through the NASA Educational Launch of. . .
Date: 01/2014 Publisher: IEEE DOI: 10.1109/USNC-URSI-NRSM.2014.6928087 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6928087
More Details
Authors: Nag Sreeja, LeMoigne Jacqueline, and de Weck Olivier
Title: Cost and risk analysis of small satellite constellations for earth observation
Abstract: Distributed Space Missions (DSMs) are gaining momentum in their application to Earth science missions owing to their ability to increase observation sampling in spatial, spectral, temporal and angular dimensions. Past literature from academia and industry have proposed and evaluated many cost models for spacecraft as well as methods for quantifying risk. However, there have been few comprehensive studies quantifying the cost for multiple spacecraft, for small satellites and the cost risk for the operations phase of the project which needs to be budgeted for when designing and building efficient architectures. This paper identifies the three critical problems with the applicability of current cost and risk models to distributed small satellite missions and uses data-based modeling to sugges. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836396 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836396
More Details
Authors: Skov Tamitha Mulligan, Fennell Joseph F., Roeder James L., Blake Bernard, and Claudepierre Seth G.
Title: Internal Charging Hazards in Near-Earth Space During Solar Cycle 24 Maximum: Van Allen Probes Measurements
Abstract: The Van Allen Probes mission provides an unprecedented opportunity to make detailed measurements of electrons and protons in the inner magnetosphere during the weak solar maximum period of cycle 24. The MagEIS suite of sensors measures energy spectra and fluxes of charged particles in the space environment. The calculations show that these fluxes result in electron deposition rates high enough to cause internal charging. We use omnidirectional fluxes of electrons and protons to calculate the dose under varying materials and thicknesses of shielding. We show examples of charge deposition rates during the times of nominal and high levels of penetrating fluxes in the inner magnetosphere covering the period from the beginning of 2013 through mid-2014. These charge deposition rates are related . . .
Date: 09/2015 Publisher: IEEE Transactions on Plasma Science Pages: 3070 - 3074 DOI: 10.1109/TPS.2015.2468214 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7247811http://xplorestaging.ieee.org/ielx7/27/7247791/07247811.pdf?arnumber=7247811
More Details
ARTEMIS
Authors: Wang Chih-Ping, Xing Xiaoyan, Nakamura T. K. M., Lyons Larry R., and Angelopoulos Vassilis
Title: Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS
Abstract: Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020603 Available at: http://doi.wiley.com/10.1002/2014JA020603
More Details
Arase satellite
Authors: é M., Matsuoka A., Kumamoto A., Kasahara Y., Goldstein J, et al.
Title: Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A
Abstract: Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00–07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9–5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10–07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed tow. . .
Date: 10/2018 Publisher: Geophysical Research Letters Pages: 10,177 - 10,184 DOI: 10.1029/2018GL080122 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080122
More Details
Arase
Authors: Miyoshi Y, Matsuda S., Kurita S., Nomura K., Keika K, et al.
Title: EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase
Abstract: Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 io. . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083024 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083024
More Details
Anti matter
Authors: Battiston Roberto
Title: Cosmic ray physics in space: from fundamental physics to applications
Abstract: One hundred years after their discovery by Victor Hess, cosmic rays are nowadays subject of intense research from space-based detectors, able to perform for the first time high precision measurement of their composition and spectra as well as of isotropy and time variability. On May 2011, the alpha magnetic spectrometer (AMS-02) has been installed on the International Space Station, to measure with high accuracy the cosmic ray properties searching for rare events which could be an indication of the nature of dark matter or presence of nuclear antimatter. AMS-02 is the result of nearly two decades of effort of an international collaboration, involving in particular Chinese and Italian scientists, to design and build a state of the art detector capable to perform high precision cosmic rays m. . .
Date: 03/2014 Publisher: Rendiconti Lincei Pages: 97 - 105 DOI: 10.1007/s12210-014-0293-1 Available at: http://link.springer.com/10.1007/s12210-014-0293-1http://link.springer.com/content/pdf/10.1007/s12210-014-0293-1
More Details
antenna sheath impedance
Authors: Hartley D. P., Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, et al.
Title: An improved sheath impedance model for the Van Allen probes EFW instrument: Effects of the spin axis antenna
Abstract: A technique to quantitatively determine the sheath impedance of the Van Allen Probes Electric Field and Waves (EFW) instrument is presented. This is achieved, for whistler mode waves, through a comparison between the total electric field wave power spectra calculated from magnetic field observations and cold plasma theory, and the total electric field wave power measured by the EFW spherical double probes instrument. In a previous study, a simple density-dependent sheath impedance model was developed in order to account for the differences between the observed and calculated wave electric field. The current study builds on this previous work by investigating the remaining discrepancies, identifying their cause, and developing an improved sheath impedance correction. Analysis reveals that a. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023597 Available at: http://doi.wiley.com/10.1002/2016JA023597
More Details
antenna geometry
Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract: Quasi thermal fluctuations in the Langmuir/upper‐hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper‐hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026460
More Details
Anisotropy‐beta inverse relation
Authors: Yu Xiongdong, and Yuan Zhigang
Title: Saturation Characteristics of Parallel EMIC Waves in the Inner Magnetosphere
Abstract: In this letter, detailed evolution process of parallel electromagnetic ion cyclotron waves in the inner magnetosphere has been investigated through quasilinear theory. A new saturation has been found to occur after the usual first saturation. During the interval between these two saturations, the energy transfers from H+ band to He+ band electromagnetic ion cyclotron waves. Moreover, through a best fitting, we obtain new model parameters for the anisotropy‐beta inverse relation of hot H+, which identifies the threshold of ion cyclotron instabilities in the inner magnetosphere. In situ observations of the Van Allen Probe mission also verify these new model parameters. Therefore, our results reveal the evolution process and saturation characteristics of parallel electromagnetic ion cyclotr. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083630 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083630
More Details
anisotropic temperature instability
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Yao Fei, Qiao Zheng, et al.
Title: Excitation of extremely low-frequency chorus emissions: The role of background plasma density
Abstract: Low‐frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts. However, the mechanism (s) generating these low‐frequency chorus emissions have not been well understood. . In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f ce (typical ordinary chorus) to 0.02 f ce (extremely low‐frequency chorus). Those extremely low‐frequency chorus waves were observed in a rather dense plasma, where the number density N e was found to be several times larger than has been associated with observations of ordinary chorus waves. For suprathermal electrons whose free energy is supplied by anisotropi. . .
Date: 02/2019 Publisher: Earth and Planetary Physics Pages: 1 - 7 DOI: 10.26464/epp2019001 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.26464/epp2019001
More Details
algorithm
Authors: Sarno-Smith Lois K., Liemohn Michael W., Skoug Ruth M., Larsen Brian A., Moldwin Mark B., et al.
Title: Local time variations of high-energy plasmaspheric ion pitch angle distributions
Abstract: Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. These results char. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022301 Available at: http://doi.wiley.com/10.1002/2015JA022301
More Details
Alfven waves
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radiation belt “dropouts” and drift-bounce resonances in broadband electromagnetic waves
Abstract: Observations during the main phase of geomagnetic storms reveal an anti-correlation between the occurrence of broadband low frequency electromagnetic waves and outer radiation belt electron flux. We show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on timescales less than a drift orbit. This process may provide outward transport sufficient to account for electron “dropouts” during storm main phase and more generally modulate the outer radiation belt during geomagnetic storms.
Date: 02/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076362 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076362/full
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Reeves G D, Baker D N, et al.
Title: Radial transport of radiation belt electrons in kinetic field-line resonances
Abstract: A representative case study from the Van Allen Probes during a geomagnetic storm recovery phase reveals enhanced electron fluxes at intermediate pitch angles over energies from ~100 keV to 5 MeV coincident with broadband low frequency electromagnetic waves. The statistical properties of these waves are used to build a model for radial diffusion via drift-bounce resonances in kinetic Alfvén eigenmodes/kinetic field-line resonances. Estimated diffusion coefficients indicate timescales for radial transport of the order of hours in storm-time events at energies from <100 keV to MeVs over equatorial pitch angles from the edge of the loss cone to nearly perpendicular to the geomagnetic field. The correlation of kinetic resonances with electron depletions and enhancements during storm main phase. . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074587 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074587/full
More Details
Authors: Chaston C. C., Bonnell J. W., Reeves G D, and Skoug R M
Title: Driving ionospheric outflows and magnetospheric O + energy density with Alfvén waves
Abstract: We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O+ ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O+ distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersive Alfvén waves over several minutes may drive order of magnitude increases in O+ ion pressure to make substantial contributions to. . .
Date: 05/2016 Publisher: Geophysical Research Letters Pages: 4825 - 4833 DOI: 10.1002/2016GL069008 Available at: http://doi.wiley.com/10.1002/2016GL069008
More Details
Authors: Chaston C. C., Bonnell J. W., Halford A J, Reeves G D, Baker D N, et al.
Title: Pitch Angle Scattering and Loss of Radiation Belt Electrons in Broadband Electromagnetic Waves
Abstract: A magnetic conjunction between Van Allen Probes spacecraft and the Balloon Array for Radiation‐belt Relativistic Electron Losses (BARREL) reveals the simultaneous occurrence of broadband Alfvénic fluctuations and multi‐timescale modulation of enhanced atmospheric X‐ray bremsstrahlung emission. The properties of the Alfvénic fluctuations are used to build a model for pitch angle scattering in the outer radiation belt on electron gyro‐radii scale field structures. It is shown that this scattering may lead to the transport of electrons into the loss cone over an energy range from hundreds of keV to multi‐MeV on diffusive timescales on the order of hours. This process may account for modulation of atmospheric X‐ray fluxes observed from balloons and constitute a significant loss p. . .
Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079527 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079527
More Details
Authors: Chaston C. C., Bonnell J. W., Wygant J R, Kletzing C A, Reeves G D, et al.
Title: Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm-time inner magnetosphere
Abstract: We report measurements of energized outflowing/bouncing ionospheric ions and heated electrons in the inner magnetosphere during a geomagnetic storm. The ions arrive in the equatorial plane with pitch angles that increase with energy over a range from tens of eV to > 50 keV while the electrons are field-aligned up to ~1 keV. These particle distributions are observed during intervals of broadband low frequency electromagnetic field fluctuations consistent with a Doppler-shifted spectrum of kinetic Alfvén waves and kinetic field-line resonances. The fluctuations extend from L≈3 out to the apogee of the Van Allen Probes spacecraft at L≈6.5. They thereby span most of the L-shell range occupied by the ring current. These measurements suggest a model for ionospheric ion outflow and energizat. . .
Date: 12/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL066674 Available at: http://doi.wiley.com/10.1002/2015GL066674http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066674
More Details
Authors: Chaston C. C., Bonnell J. W., Kletzing C A, Hospodarsky G B, Wygant J R, et al.
Title: Broadband low frequency electromagnetic waves in the inner magnetosphere
Abstract: A prominent yet largely unrecognized feature of the inner magnetosphere associated with particle injections, and more generally geomagnetic storms, is the occurrence of broadband electromagnetic field fluctuations over spacecraft frame frequencies (fsc) extending from effectively zero to fsc ≳ 100 Hz. Using observations from the Van Allen Probes we show that these waves most commonly occur pre-midnight but are observed over a range of local times extending into the dayside magnetosphere. We find that the variation of magnetic spectral energy density with fsc obeys inline image over several decades with a spectral break-point at fb ≈1 Hz. The values for α are log normally distributed with α = 1.9 ± 0.6 for fsc < fb andα = 2.9 ± 0.6 for fsc > fb. A is . . .
Date: 09/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021690 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA021690/abstract
More Details

Pages