Biblio

Found 909 results
Journal Article
Authors: Selesnick R. S., Baker D N, Jaynes A. N., Li X, Kanekal S G, et al.
Title: Inward diffusion and loss of radiation belt protons
Abstract: Radiation belt protons in the kinetic energy range 24 to 76 MeV are being measured by the Relativistic Electron Proton Telescope on each of the two Van Allen Probes. Data have been processed for the purpose of studying variability in the trapped proton intensity during October 2013 to August 2015. For the lower energies (≲32 MeV), equatorial proton intensity near L = 2 showed a steady increase that is consistent with inward diffusion of trapped solar protons, as shown by positive radial gradients in phase space density at fixed values of the first two adiabatic invariants. It is postulated that these protons were trapped with enhanced efficiency during the 7 March 2012 solar proton event. A model that includes radial diffusion, along with known trapped proton source and loss processes, s. . .
Date: 03/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022154 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015JA022154/full
More Details
Authors: Ukhorskiy A Y, Sitnov M I, Merkin V. G., Gkioulidou M., and Mitchell D G
Title: Ion acceleration at dipolarization fronts in the inner magnetosphere
Abstract: During geomagnetic storms plasma pressure in the inner magnetosphere is controlled by energetic ions of tens to hundreds of keV. Plasma pressure is the source of global storm time currents, which control the distribution of magnetic field and couple the inner magnetosphere and the ionosphere. Recent analysis showed that the buildup of hot ion population in the inner magnetosphere largely occurs in the form of localized discrete injections associated with sharp dipolarizations of magnetic field, similar to dipolarization fronts in the magnetotail. Because of significant differences between the ambient magnetic field and the dipolarization front properties in the magnetotail and the inner magnetosphere, the physical mechanisms of ion acceleration at dipolarization fronts in these two regions. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023304 Available at: http://doi.wiley.com/10.1002/2016JA023304
More Details
Authors: Min Kyungguk, Denton Richard E, Liu Kaijun, Gary Peter, and Spence Harlan E.
Title: Ion Bernstein instability as a possible source for oxygen ion cyclotron harmonic waves
Abstract: This paper demonstrates that an ion Bernstein instability can be a possible source for recently reported electromagnetic waves with frequencies at or near the singly ionized oxygen ion cyclotron frequency, inline image, and its harmonics. The particle measurements during strong wave activity revealed a relatively high concentration of oxygen ions (∼15%) whose phase space density exhibits a local peak at energy ∼20 keV. Given that the electron plasma-to-cyclotron frequency ratio is inline image, this energy corresponds to the particle speed inline image, where vA is the oxygen Alfvén speed. Using the observational key plasma parameters, a simplified ion velocity distribution is constructed, where the local peak in the oxygen ion velocity distribution is represented by an isotropic s. . .
Date: 05/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023979 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023979/full
More Details
Authors: Ma Q, Li W, Yue C., Thorne R M, Bortnik J, et al.
Title: Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere
Abstract: Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth's magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen‐ and helium‐band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi‐linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen‐ and helium‐band EMIC waves, respectively. Moreover, we fou. . .
Date: 06/2019 Publisher: Geophysical Research Letters Pages: 6258 - 6267 DOI: 10.1029/2019GL083513 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083513
More Details
Authors: Remya B., Sibeck D G, Halford A J, Murphy K. R., Reeves G D, et al.
Title: Ion Injection Triggered EMIC Waves in the Earth's Magnetosphere
Abstract: We present Van Allen Probe observations of electromagnetic ion cyclotron (EMIC) waves triggered solely due to individual substorm‐injected ions in the absence of storms or compressions of the magnetosphere during 9 August 2015. The time at which the injected ions are observed directly corresponds to the onset of EMIC waves at the location of Van Allen Probe A (L = 5.5 and 18:06 magnetic local time). The injection was also seen at geosynchronous orbit by the Geostationary Operational Environmental Satellite and Los Alamos National Laboratory spacecraft, and the westward(eastward) drift of ions(electrons) was monitored by Los Alamos National Laboratory spacecraft at different local times. The azimuthal location of the injection was determined by tracing the injection signatures backward in. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025354 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025354
More Details
Authors: Ferradas C. P., Zhang J.-C., Spence H E, Kistler L. M., Larsen B A, et al.
Title: Ion nose spectral structures observed by the Van Allen Probes
Abstract: We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic loc. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022942 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022942/full
More Details
Authors: Ukhorskiy A Y, Sorathia K. A., Merkin V. G., Sitnov M I, Mitchell D G, et al.
Title: Ion Trapping and Acceleration at Dipolarization Fronts: High-Resolution MHD/Test-Particle Simulations
Abstract: Much of plasma heating and transport from the magnetotail into the inner magnetosphere occurs in the form of mesoscale discrete injections associated with sharp dipolarizations of magnetic field (dipolarization fronts). In this paper we investigate the role of magnetic trapping in acceleration and transport of the plasmasheet ions into the ring current. For this purpose we use high‐resolution global MHD and three‐dimensional test‐particle simulations. It is shown that trapping, produced by sharp magnetic field gradients at the interface between dipolarizations and the ambient plasma, affect plasmasheet protons with energies above approximately 10 keV, enabling their transport across more than 10 Earth radii and acceleration by a factor of 10. Our estimates show that trapping is impor. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025370 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025370
More Details
Authors: Baker D N, Hoxie V C, Jaynes A., Kale A., Kanekal S G, et al.
Title: James Van Allen and His Namesake NASA Mission
Abstract: In many ways, James A. Van Allen defined and “invented” modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 469 - 470 DOI: 10.1002/eost.v94.4910.1002/2013EO490001 Available at: http://doi.wiley.com/10.1002/eost.v94.49http://doi.wiley.com/10.1002/2013EO490001
More Details
Authors: Mauk Barry H., Sibeck David G., and Kessel Ramona L.
Title: Journal Special Collection Explores Early Results From the Van Allen Probes Mission
Abstract: The processes governing the charged particle populations in the radiation belts encircling Earth have been the subject of intense interest and increasing concern since their discovery by James Van Allen and his team more than 50 years ago [Baker et al., 2013]. Intense interest continues because we still do not know how the various processes work in concert to enhance, remove, and transport particle radiation. Concern is ongoing because the Van Allen radiation belts pose hazards to astronauts and our ever-growing fleet of spacecraft with increasingly sensitive components.
Date: 04/2014 Publisher: Eos, Transactions American Geophysical Union Pages: 112 - 112 DOI: 10.1002/eost.v95.1310.1002/2014EO130007 Available at: http://doi.wiley.com/10.1002/eost.v95.13http://doi.wiley.com/10.1002/2014EO130007
More Details
Authors: Malaspina David M., Claudepierre Seth G., Takahashi Kazue, Jaynes Allison N., Elkington Scot R, et al.
Title: Kinetic Alfvén Waves and Particle Response Associated with a Shock-Induced, Global ULF Perturbation of the Terrestrial Magnetosphere
Abstract: On 2 October 2013, the arrival of an interplanetary shock compressed the Earth's magnetosphere and triggered a global ULF (ultra low frequency) oscillation. The Van Allen Probe B spacecraft observed this large-amplitude ULF wave in situ with both magnetic and electric field data. Broadband waves up to approximately 100 Hz were observed in conjunction with, and modulated by, this ULF wave. Detailed analysis of fields and particle data reveals that these broadband waves are Doppler-shifted kinetic Alfvén waves. This event suggests that magnetospheric compression by interplanetary shocks can induce abrupt generation of kinetic Alfvén waves over large portions of the inner magnetosphere, potentially driving previously unconsidered wave-particle interactions throughout the inner magnetosphere. . .
Date: 11/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065935 Available at: http://doi.wiley.com/10.1002/2015GL065935http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL065935
More Details
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts
Abstract: Important nonlinear wave-wave and wave-particle interactions that occur in the Earth’s Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85º. When the pump amplitude exceeds a threshold ~5 x10^6 times the back- ground magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (~55º). The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB=B_0 ~7 x 10^-7. . .
Date: 08/2015 Publisher: Physics of Plasmas DOI: 10.1063/1.4928944 Available at: http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4928944
More Details
Authors: Tejero E. M., Crabtree C., Blackwell D. D., Amatucci W. E., Mithaiwala M., et al.
Title: Laboratory studies of nonlinear whistler wave processes in the Van Allen radiation belts
Abstract: Important nonlinear wave-wave and wave-particle interactions that occur in the Earth's Van Allen radiation belts are investigated in a laboratory experiment. Predominantly electrostatic waves in the whistler branch are launched that propagate near the resonance cone with measured wave normal angle greater than 85° . When the pump amplitude exceeds a threshold ∼5×10−6 times the background magnetic field, wave power at frequencies below the pump frequency is observed at wave normal angles (∼55°) . The scattered wave has a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Occasionally, the parametric decay of a lower hybrid wave into a magnetosonic wave and a whistler wave is simultaneously observed with a threshold of δB/B0∼7×10−7. . .
Date: 09/2015 Publisher: Physics of Plasmas Pages: 091503 DOI: 10.1063/1.4928944 Available at: http://scitation.aip.org/content/aip/journal/pop/22/9/10.1063/1.4928944
More Details
Authors: Wygant J, Mozer F, Temerin M, Blake J, Maynard N, et al.
Title: Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes
Abstract: Electric and magnetic fields were measured by the CRRES spacecraft at an L-value of 2.2 to 2.6 near 0300 magnetic local time during a strong storm sudden commencement (SSC) on March 24, 1991. The electric field signature at the spacecraft at the time of the SSC was characterized by a large amplitude oscillation (80 mV/m peak to peak) with a period corresponding to the 150 second drift echo period of the simultaneously observed 15 MeV electrons. Considerations of previous statistical studies of the magnitude of SSC electric and magnetic fields versus local time and analysis of the energization and cross-L transport of the particles imply the existence of 200 to 300 mV/m electric fields over much of the dayside magnetosphere. These observations also suggest that the 15 MeV drift echo electro. . .
Date: 08/1994 Publisher: Geophysical Research Letters Pages: 1739–1742 DOI: 10.1029/94GL00375 Available at: http://onlinelibrary.wiley.com/doi/10.1029/94GL00375/abstract
More Details
Authors: Mazur J E, O'Brien T P, Looper M D, and Blake J B
Title: Large anisotropies of >60 MeV protons throughout the inner belt observed with the Van Allen Probes mission
Abstract: We report large directional anisotropies of >60 MeV protons using instrumentation on the Van Allen Probes. The combination of a spinning satellite and measurements from the Relativistic Proton Spectrometer instruments that are insensitive to protons outside the instrument field of view together yield a new look at proton radial gradients. The relatively large proton gyroradius at 60 MeV couples with the radial gradients to produce large (maximum ~10:1) flux anisotropies depending on (i) whether the proton guiding center was above or below the Van Allen Probes spacecraft and (ii) the sign of the local flux gradient. In addition to these newly measured anisotropies, below ~2000 km we report a new effect of systematically changing minimum altitude on some proton drift shells that furthe. . .
Date: 06/2014 Publisher: Geophysical Research Letters Pages: 3738 - 3743 DOI: 10.1002/grl.v41.1110.1002/2014GL060029 Available at: http://doi.wiley.com/10.1002/grl.v41.11http://doi.wiley.com/10.1002/2014GL060029
More Details
Authors: Califf S., Li X, Wolf R. A., Zhao H., Jaynes A. N., et al.
Title: Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams
Abstract: The subauroral polarization stream (SAPS) is an important magnetosphere-ionosphere (MI) coupling phenomenon that impacts a range of particle populations in the inner magnetosphere. SAPS studies often emphasize ionospheric signatures of fast westward flows, but the equatorial magnetosphere is also affected through strong radial electric fields in the dusk sector. This study focuses on a period of steady southward interplanetary magnetic field (IMF) during the 29 June 2013 geomagnetic storm where the Van Allen Probes observe a region of intense electric fields near the plasmapause over multiple consecutive outbound duskside passes. We show that the large-amplitude electric fields near the equatorial plane are consistent with SAPS by investigating the relationship between plasma sheet ion and. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022252 Available at: http://doi.wiley.com/10.1002/2015JA022252
More Details
Authors: Su Zhenpeng, Liu Nigang, Zheng Huinan, Wang Yuming, and Wang Shui
Title: Large-Amplitude Extremely Low Frequency Hiss Waves in Plasmaspheric Plumes
Abstract: N/A
Date: 01/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076754 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076754/full
More Details
Authors: Záhlava J., Němec F., Santolik O, Kolmašová I., Hospodarsky G B, et al.
Title: Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere
Abstract: Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low‐Earth orbit as well as in high‐altitude equatorial region, together with a ground‐based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurements obtained when thunderstorms are absent. We show that strong lightning activity substantially affects the wave intensity in a wide range of L‐shells and altitudes. The effect is observed mainly between 500 Hz and 4 kHz, but its frequency range strongly varie. . .
Date: 07/2019 Publisher: Geophysical Research Letters Pages: 8607 - 8616 DOI: 10.1029/2019GL083918 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083918
More Details
Authors: Kennel C, and Petschek H
Title: Limit on Stably Trapped Particle Fluxes
Abstract: Whistler mode noise leads to electron pitch angle diffusion. Similarly, ion cyclotron noise couples to ions. This diffusion results in particle precipitation into the ionosphere and creates a pitch angle distributon of trapped particles that is unstable to further wave growth. Since excessive wave growth leads to rapid diffusion and particle loss, the requirement that the growth rate be limited to the rate at which wave energy is depleted by wave propagation permits an estimate of an upper limit to the trapped equatorial particle flux. Electron fluxes >40 kev and proton fluxes >120 kev observed on Explorers 14 and 12, respectively, obey this limit with occasional exceptions. Beyond L = 4, the fluxes are just below their limit, indicating that an unspecified acceleration source, sufficient . . .
Date: 01/1966 Publisher: Journal Geophysical Research Pages: 1-28 DOI: 10.1029/JZ071i001p00001 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JZ071i001p00001/full
More Details
Authors: Summers Danny, and Shi Run
Title: Limiting energy spectrum of an electron radiation belt
Abstract: To determine the Kennel-Petschek limiting particle flux in a planetary radiation belt in a fully relativistic regime, without assuming a predetermined form for the particle energy distribution, has been a long-standing challenge in space physics. In this paper, for the case of whistler mode wave-electron interaction, we meet this challenge. The limiting flux is determined by a steady state marginal stability criterion in which a convective wave gain condition is applied over all frequencies for which wave growth occurs. This condition produces an integral equation for the trapped flux. We find that in the relativistic regime the limiting electron energy spectrum varies asymptotically as 1/E, for large energy E, just as in the nonrelativistic case. However, the scaling coefficient in the re. . .
Date: 08/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 6313 - 6326 DOI: 10.1002/2014JA020250 Available at: http://doi.wiley.com/10.1002/2014JA020250
More Details
Authors: Motoba T., Takahashi K., Ukhorskiy A., Gkioulidou M., Mitchell D G, et al.
Title: Link between pre-midnight second harmonic poloidal waves and auroral undulations: Conjugate observations with a Van Allen Probes spacecraft and a THEMIS all-sky imager
Abstract: We report, for the first time, an auroral undulation event on 1 May 2013 observed by an all-sky imager (ASI) at Athabasca (L = 4.6), Canada, for which in situ field and particle measurements in the conjugate magnetosphere were available from a Van Allen Probes spacecraft. The ASI observed a train of auroral undulation structures emerging spontaneously in the pre-midnight subauroral ionosphere, during the growth phase of a substorm. The undulations had an azimuthal wavelength of ~180 km and propagated westward at a speed of 3–4 km s−1. The successive passage over an observing point yielded quasi-periodic oscillations in diffuse auroral emissions with a period of ~40 s. The azimuthal wave number m of the auroral luminosity oscillations was found to be m ~ −103. During the event the spa. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020863 Available at: http://doi.wiley.com/10.1002/2014JA020863
More Details
Authors: Ripoll J.‐F., Farges T., Lay E. H., and Cunningham G. S.
Title: Local and Statistical Maps of Lightning‐Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World‐Wide Lightning Location Network Database
Abstract: We propose a new method that uses the World‐Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 × 108 strokes.). The ratio of the drift power density to the local power density defines a time‐resolved WWLLN‐based model of lightning‐generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time‐resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-ma. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 4122 - 4133 DOI: 10.1029/2018GL081146 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081146
More Details
Authors: He Zhaoguo, Chen Lunjin, Liu Xu, Zhu Hui, Liu Si, et al.
Title: Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes
Abstract: The generation of a high‐frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (∼10−6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1–2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally insi. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 1141 - 1148 DOI: 10.1029/2018GL081578 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081578
More Details
Authors: Shue Jih-Hong, Hsieh Yi-Kai, Tam Sunny W. Y., Wang Kaiti, Fu Hui Shan, et al.
Title: Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere
Abstract: Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These res. . .
Date: 10/2015 Publisher: Geophysical Research Letters Pages: 8294 - 8301 DOI: 10.1002/2015GL066107 Available at: http://doi.wiley.com/10.1002/2015GL066107http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015GL066107
More Details
Authors: Sarno-Smith Lois K., Liemohn Michael W., Skoug Ruth M., Larsen Brian A., Moldwin Mark B., et al.
Title: Local time variations of high-energy plasmaspheric ion pitch angle distributions
Abstract: Recent observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument revealed a persistent depletion in the 1–10 eV ion population in the postmidnight sector during quiet times in the 2 < L < 3 region. This study explores the source of this ion depletion by developing an algorithm to classify 26 months of pitch angle distributions measured by the HOPE instrument. We correct the HOPE low energy fluxes for spacecraft potential using measurements from the Electric Field and Waves (EFW) instrument. A high percentage of low count pitch angle distributions is found in the postmidnight sector coupled with a low percentage of ion distributions peaked perpendicular to the field line. A peak in loss cone distributions in the dusk sector is also observed. These results char. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA022301 Available at: http://doi.wiley.com/10.1002/2015JA022301
More Details
Authors: Tetrick S. S., Engebretson M. J., Posch J. L., Olson C. N., Smith C W, et al.
Title: Location of intense electromagnetic ion cyclotron (EMIC) wave events relative to the plasmapause: Van Allen Probes observations
Abstract: We have studied the spatial location relative to the plasmapause (PP) of the most intense electromagnetic ion cyclotron (EMIC) waves observed on Van Allen Probes A and B during their first full precession in local time. Most of these waves occurred over an L range of from -1 to +2 RE relative to the PP. Very few events occurred only within 0.1 RE of the PP, and events with a width in L of < 0.2 REoccurred both inside and outside the PP. Wave occurrence was always associated with high densities of ring current ions; plasma density gradients or enhancements were associated with some events but were not dominant factors in determining the sites of wave generation. Storm main and recovery phase events in the dusk sector were often inside the PP, and dayside events during quiet times and co. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023392 Available at: http://doi.wiley.com/10.1002/2016JA023392
More Details
Authors: Ripoll J.-F., Chen Y., Fennell J, and Friedel R
Title: On long decays of electrons in the vicinity of the slot region observed by HEO3
Abstract: Long decay periods of electron counts, which follow abrupt rises and last from weeks to months, have been observed by the HEO3 spacecraft in the vicinity of the slot region between the years 1998 and 2007. During the most stable decay periods as selected, e-folding timescales are extracted and statistically analyzed from observations as a function of L-shell and electron energy. A challenge is to reproduce the observed timescales from simulations of pitch angle diffusion by three acting waves–the plasmaspheric hiss, lightning-generated whistlers, and VLF transmitter waves. We perform full numerical simulations to accurately compute electron lifetimes. We choose to use the method and wave parameters proposed by Abel & Thorne [1998] with the goal to assess whether they can reproduce lifeti. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020449 Available at: http://doi.wiley.com/10.1002/2014JA020449
More Details
Authors: áhlava J., ěmec F., ík O., šová I., Hospodarskyy G. B., et al.
Title: Longitudinal dependence of whistler mode electromagnetic waves in the Earth's inner magnetosphere
Abstract: We use the measurements performed by the DEMETER (2004‐2010) and the Van Allen Probes (2012‐2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth's inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz–2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus s. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025284 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025284
More Details
Authors: é M., Matsuoka A., Kumamoto A., Kasahara Y., Goldstein J, et al.
Title: Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A
Abstract: Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00–07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9–5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15% O+ ions. Probe A moved outbound from L = 2.0 to 6.2 in the afternoon sector during 04:10–07:30 UT and observed no clear enhancements in the average plasma mass. For this event, the O+ density enhancement in the inner magnetosphere (i.e., oxygen torus) does not extend over all MLT but is skewed tow. . .
Date: 10/2018 Publisher: Geophysical Research Letters Pages: 10,177 - 10,184 DOI: 10.1029/2018GL080122 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080122
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, et al.
Title: A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt
Abstract: Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unc. . .
Date: 04/2013 Publisher: Science Pages: 186-190 DOI: 10.1126/science.1233518 Available at: http://www.sciencemag.org/content/340/6129/186
More Details
Authors: Neal Jason J., Rodger Craig J., Clilverd Mark A., Thomson Neil R., Raita Tero, et al.
Title: Long-term determination of energetic electron precipitation into the atmosphere from AARDDVARK subionospheric VLF observations
Abstract: We analyze observations of subionospherically propagating very low frequency (VLF) radio waves to determine outer radiation belt energetic electron precipitation (EEP) flux magnitudes. The radio wave receiver in Sodankylä, Finland (Sodankylä Geophysical Observatory) observes signals from the transmitter with call sign NAA (Cutler, Maine). The receiver is part of the Antarctic-Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK). We use a near-continuous data set spanning November 2004 until December 2013 to determine the long time period EEP variations. We determine quiet day curves over the entire period and use these to identify propagation disturbances caused by EEP. Long Wave Propagation Code radio wave propagation modeling is used to estimate the p. . .
Date: 03/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020689 Available at: http://doi.wiley.com/10.1002/2014JA020689
More Details
Authors: Ohtani S, Miyoshi Y, Singer H J, and Weygand J M
Title: On the loss of relativistic electrons at geosynchronous altitude: Its dependence on magnetic configurations and external conditions
Abstract: [1] The present study statistically examines geosynchronous magnetic configurations and external conditions that characterize the loss of geosynchronous MeV electrons. The loss of MeV electrons often takes place during magnetospheric storms, but it also takes place without any clear storm activity. It is found that irrespective of storm activity, the day-night asymmetry of the geosynchronous H (north-south) magnetic component is pronounced during electron loss events. For the loss process, the magnitude, rather than the duration, of the magnetic distortion appears to be important, and its effective duration can be as short as ∼30 min. The solar wind dynamic pressure tends to be high and interplanetary magnetic field BZ tends to be southward during electron loss events. Under such externa. . .
Date: 01/2009 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013391 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013391/full
More Details
Authors: Ren Jie, Zong Q. G., Miyoshi Y, Zhou X. Z., Wang Y. F., et al.
Title: Low-energy (< 200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation
Abstract: We report observational evidence of cold plamsmaspheric electron (< 200 eV) acceleration by ultra-low-frequency (ULF) waves in the plasmaspheric boundary layer on 10 September 2015. Strongly enhanced cold electron fluxes in the energy spectrogram were observed along with second harmonic mode waves with a period of about 1 minute which lasted several hours during two consecutive Van Allen Probe B orbits. Cold electron (<200 eV) and energetic proton (10-20 keV) bi-directional pitch angle signatures observed during the event are suggestive of the drift-bounce resonance mechanism. The correlation between enhanced energy fluxes and ULF waves leads to the conclusions that plasmaspheric dynamics is strongly affected by ULF waves. Van Allen Probe A and B, GOES 13, GOES 15 and MMS 1 observations su. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024316 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024316/full
More Details
Authors: Gkioulidou Matina, Ohtani S, Ukhorskiy A Y, Mitchell D G, Takahashi K., et al.
Title: Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations
Abstract: The heavy ion component of the low‐energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low‐energy (Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 405 - 419 DOI: 10.1029/2018JA025862 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025862
More Details
Authors: Khazanov G. V., Boardsen S., Krivorutsky E. N., Engebretson M. J., Sibeck D., et al.
Title: Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B
Abstract: We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth . . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022814 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022814
More Details
Authors: Khazanov G. V., Boardsen S., Krivorutsky E. N., Engebretson M. J., Sibeck D., et al.
Title: Lower hybrid frequency range waves generated by ion polarization drift due to electromagnetic ion cyclotron waves: Analysis of an event observed by the Van Allen Probe B
Abstract: We analyze a wave event that occurred near noon between 07:03 and 07:08 UT on 23 February 2014 detected by the Van Allen Probes B spacecraft, where waves in the lower hybrid frequency range (LHFR) and electromagnetic ion cyclotron (EMIC) waves are observed to be highly correlated, with Pearson correlation coefficient of ~0.86. We assume that the correlation is the result of LHFR wave generation by the ions' polarization drift in the electric field of the EMIC waves. To check this assumption the drift velocities of electrons and H+, He+, and O+ ions in the measured EMIC wave electric field were modeled. Then the LHFR wave linear instantaneous growth rates for plasma with these changing drift velocities and different plasma compositions were calculated. The time distribution of these growth . . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 449 - 463 DOI: 10.1002/2016JA022814 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022814/full
More Details
Authors: Contel O., Nakamura R, Breuillard H., Argall M. R., Graham D. B., et al.
Title: Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm
Abstract: We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing, and with a smaller lower-hybrid drift wave activity. Electromag. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024550 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024550/full
More Details
Authors: Posch J. L, Engebretson M. J., Olson C. N., Thaller S. A., Breneman A. W., et al.
Title: Low-harmonic magnetosonic waves observed by the Van Allen Probes
Abstract: Purely compressional electromagnetic waves (fast magnetosonic waves), generated at multiple harmonics of the local proton gyrofrequency, have been observed by various types of satellite instruments (fluxgate and search coil magnetometers and electric field sensors), but most recent studies have used data from search coil sensors, and many have been restricted to high harmonics. We report here on a survey of low-harmonic waves, based on electric and magnetic field data from the EFW double probe and EMFISIS fluxgate magnetometer instruments, respectively, on the Van Allen Probes spacecraft during its first full precession through all local times, from October 1, 2012 through July 13, 2014. These waves were observed both inside and outside the plasmapause (PP), at L shells from 2.4 to ~6 (the. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021179 Available at: http://doi.wiley.com/10.1002/2015JA021179
More Details
Authors: Lejosne ène, and Mozer F S
Title: Magnetic activity dependence of the electric drift below L=3
Abstract: More than two years of magnetic and electric field measurements by the Van Allen Probes are analyzed with the objective of determining the average effects of magnetic activity on the electric drift below L=3. The study finds that an increase in magnetospheric convection leads to a decrease in the magnitude of the azimuthal component of the electric drift, especially in the night‐side. The amplitude of the slowdown is a function of L, local time MLT, and Kp, in a pattern consistent with the storm‐time dynamics of the ionosphere and thermosphere. To a lesser extent, magnetic activity also alters the average radial component of the electric drift below L=3. A global picture for the average variations of the electric drift with Kp is provided as a function of L and MLT. It is the first tim. . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077873 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077873
More Details
Authors: Blake J B, Carranza P A, Claudepierre S G, Clemmons J H, Crain W R, et al.
Title: The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
Abstract: This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. . . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 383-421 DOI: 10.1007/s11214-013-9991-8
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F, Artemyev A. V., and Jovanovic D.
Title: Magnetic field depression within electron holes
Abstract: We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T∥∼2. We argue that the observed electron holes could be generated. . .
Date: 04/2015 Publisher: Geophysical Research Letters Pages: 2123 - 2129 DOI: 10.1002/2015GL063370 Available at: http://doi.wiley.com/10.1002/2015GL063370
More Details
Authors: Ali Ashar F., Elkington Scot R, Tu Weichao, Ozeke Louis G., Chan Anthony A, et al.
Title: Magnetic field power spectra and magnetic radial diffusion coefficients using CRRES magnetometer data
Abstract: We used the fluxgate magnetometer data from Combined Release and Radiation Effects Satellite (CRRES) to estimate the power spectral density (PSD) of the compressional component of the geomagnetic field in the ∼1 mHz to ∼8 mHz range. We conclude that magnetic wave power is generally higher in the noon sector for quiet times with no significant difference between the dawn, dusk, and the midnight sectors. However, during high Kp activity, the noon sector is not necessarily dominant anymore. The magnetic PSDs have a very distinct dependence on Kp. In addition, the PSDs appear to have a weak dependence on McIlwain parameter L with power slightly increasing as L increases. The magnetic wave PSDs are used along with the Fei et al. (2006) formulation to compute inline image as a function of L . . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020419 Available at: http://doi.wiley.com/10.1002/2014JA020419
More Details
Authors: Paral J., Hudson M K, Kress B T, Wiltberger M. J., Wygant J R, et al.
Title: Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013
Abstract: Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L = 4.5, well within the computed magnetopause location. We compare ULF wave power from the Electric Field and Waves (EFW) electric field instrument on th. . .
Date: 08/2015 Publisher: Annales Geophysicae Pages: 1037 - 1050 DOI: 10.5194/angeo-33-1037-2015 Available at: http://www.ann-geophys.net/33/1037/2015/angeo-33-1037-2015.pdf
More Details
Authors: Kim Kyung-Chan, and Lee Dae-Young
Title: Magnetopause structure favorable for radiation belt electron loss
Abstract: Magnetopause shadowing is regarded as one of the major reasons for the loss of relativistic radiation belt electrons, although this has not yet been fully validated by observations. Previous simulations on this process assumed that all of the electrons encountering the magnetopause are simply lost into the magnetosheath just as ring current ions can be and did not examine details of the particle dynamics across and inside the magnetopause which has a finite thickness. In this paper, we perform test particle orbit calculations based on a simplified one-dimensional magnetopause model to demonstrate specifically how relativistic electrons arriving at the prenoon side of the magnetopause can be lost. The calculation results indicate that the loss process is determined by two factors: (i) a gra. . .
Date: 07/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 5495 - 5508 DOI: 10.1002/2014JA019880 Available at: http://doi.wiley.com/10.1002/2014JA019880
More Details
Authors: Liu Nigang, Su Zhenpeng, Zheng Huinan, Wang Yuming, and Wang Shui
Title: Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts
Abstract: Magnetosonic waves play a potentially important role in the complex evolution of the radiation belt electrons. These waves typically appear as discrete emission lines along the proton gyrofrequency harmonics, consistent with the prediction of the local Bernstein mode instability of hot proton ring distributions. Magnetosonic waves are nearly dispersionless particularly at low harmonics and therefore have the roughly unchanged frequency‐time structures during the propagation. On the basis of Van Allen Probes observations, we here present the first report of magnetosonic harmonic falling and rising frequency emissions. They lasted for up to 2 h and occurred primarily in the dayside plasmatrough following intense substorms. These harmonic emission lines were well spaced by the proton gyrofr. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079232 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079232
More Details
Authors: Ma Qianli, Li Wen, Chen Lunjin, Thorne Richard M, and Angelopoulos Vassilis
Title: Magnetosonic wave excitation by ion ring distributions in the Earth's inner magnetosphere
Abstract: Combining Time History of Events and Macroscale Interaction during Substorms (THEMIS) wave and particle observations and a quantitative calculation of linear wave growth rate, we demonstrate that magnetosonic (MS) waves can be locally excited by ion ring distributions in the Earth's magnetosphere when the ion ring energy is comparable to the local Alfven energy. MS waves in association with ion ring distributions were observed by THEMIS A on 24 November 2010 in the afternoon sector, both outside the plasmapause where the wave spectrum varied with fLHR and inside the plasmapause where the wave frequency band remained nearly constant. Our plasma instability analysis in three different regions shows that higher and narrow frequency band MS waves are excited locally outside the plasmapause, an. . .
Date: 02/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 844 - 852 DOI: 10.1002/2013JA019591 Available at: http://doi.wiley.com/10.1002/2013JA019591
More Details
Authors: Wei Dong, Yu Yiqun, and He Fei
Title: The Magnetospheric Driving Source of Double‐Peak Subauroral Ion Drifts: Double Ring Current Pressure Peaks
Abstract: Double‐peak subauroral ion drifts (DSAIDs), characterized by two high‐speed flow channels, is a newly identified flow structure in the subauroral ionosphere. He et al. (2016, https://doi.org/10.1002/2016GL069133) proposed that two region 2 field‐aligned currents (R2 FACs) might cause the DSAIDs. However, the underlying physical process that drives the double R2 FACs is unknown. This study reports a DSAIDs event and reveals its magnetospheric drivers. Defense Meteorological Satellite Program F18 satellite observed DSAIDs in the duskside subauroral region, which corresponded well to two low‐density troughs and two R2 FACs. The Van Allen Probe B demonstrated that intense substorm ion injections recurrently occurred prior to the formation of DSAIDs, suggesting a potential magnetospheri. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083186 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083186
More Details
Authors: Fuselier S. A., Lewis W. S., Schiff C., Ergun R., Burch J L, et al.
Title: Magnetospheric Multiscale Science Mission Profile and Operations
Abstract: The Magnetospheric Multiscale (MMS) mission and operations are designed to provide the maximum reconnection science. The mission phases are chosen to investigate reconnection at the dayside magnetopause and in the magnetotail. At the dayside, the MMS orbits are chosen to maximize encounters with the magnetopause in regions where the probability of encountering the reconnection diffusion region is high. In the magnetotail, the orbits are chosen to maximize encounters with the neutral sheet, where reconnection is known to occur episodically. Although this targeting is limited by engineering constraints such as total available fuel, high science return orbits exist for launch dates over most of the year. The tetrahedral spacecraft formation has variable spacing to determine the optimum se. . .
Date: 09/2014 Publisher: Space Science Reviews DOI: 10.1007/s11214-014-0087-x Available at: http://link.springer.com/content/pdf/10.1007/s11214-014-0087-x
More Details
Authors: Nishi Katsuki, Shiokawa Kazuo, and Spence Harlan
Title: Magnetospheric source region of auroral finger-like structures observed by the RBSP-A satellite
Abstract: Auroral finger‐like structures appear equatorward of the auroral oval in the diffuse auroral region and contribute to the auroral fragmentation into patches. A previous report of the first conjugate observation of auroral finger‐like structures using a THEMIS GBO camera and the THEMIS‐E satellite at a radial distance of ∼8 RE showed anti‐phase oscillations of magnetic and plasma pressures in the dawnside plasma sheet. In the present study, we report another simultaneous observation of auroral finger‐like structures at Gillam, Canada at ∼0900 UT (0230 magnetic local time) on November 14, 2014 with the RBSP satellites at 5.8 RE in the inner magnetosphere. From this simultaneous observation event, we obtained the following observations. (1) Auroral finger‐like structures devel. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025480 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025480
More Details
Authors: Posner A., Hesse M, and Cyr O. C. St.
Title: The main pillar: Assessment of space weather observational asset performance supporting nowcasting, forecasting, and research to operations
Abstract: Space weather forecasting critically depends upon availability of timely and reliable observational data. It is therefore particularly important to understand how existing and newly planned observational assets perform during periods of severe space weather. Extreme space weather creates challenging conditions under which instrumentation and spacecraft may be impeded or in which parameters reach values that are outside the nominal observational range. This paper analyzes existing and upcoming observational capabilities for forecasting, and discusses how the findings may impact space weather research and its transition to operations. A single limitation to the assessment is lack of information provided to us on radiation monitor performance, which caused us not to fully assess (i.e., not as. . .
Date: 04/2014 Publisher: Space Weather Pages: 257 - 276 DOI: 10.1002/swe.v12.410.1002/2013SW001007 Available at: http://doi.wiley.com/10.1002/swe.v12.4http://doi.wiley.com/10.1002/2013SW001007
More Details
Authors: Ozeke L. G., Mann I. R., Claudepierre S G, Henderson M., Morley S. K., et al.
Title: The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport
Abstract: We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations dr. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026326 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026326
More Details

Pages