Biblio

Found 3587 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
electric field sensitivity
Authors: Ozaki Mitsunori, Yagitani Satoshi, Takahashi Ken, Imachi Tomohiko, Koji Hiroki, et al.
Title: Equivalent Circuit Model for the Electric Field Sensitivity of a Magnetic Search Coil of Space Plasma
Abstract: Magnetic search coils (MSCs) are sensitive to both magnetic and electric fields, but detecting electric fields is unnecessary for magnetic observations of plasma waves. However, it is important to evaluate both sensitivities for different geometries and electrostatic shields to avoid electric field pickup. An equivalent circuit model for the electric field sensitivity of an MSC in a collisionless isotropic cold plasma is developed here using electrical coupling through a sheath capacitance. That sensitivity is defined by a relationship between the MSC impedance and the sheath capacitance. To confirm the validity of the circuit model, the sensitivity to an electric field is measured by imposing an external electric field using charged parallel metallic plates in laboratory experiments. The . . .
Date: 10/2014 Publisher: IEEE Sensors Journal Pages: 1 - 1 DOI: 10.1109/JSEN.2014.2365495 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6937067
More Details
electric fields
Authors: Dai Lei, Wang Chi, Duan Suping, He Zhaohai, Wygant John R., et al.
Title: Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations
Abstract: Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L∼5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over ∼40s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the in. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064955 Available at: http://doi.wiley.com/10.1002/2015GL064955
More Details
Authors: Lejosne ène, Kunduri B. S. R., Mozer F S, and Turner D. L.
Title: Energetic electron injections deep into the inner magnetosphere: a result of the subauroral polarization stream (SAPS) potential drop
Abstract: It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large‐scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F‐18 and the Van Allen Probes, we show that subauroral polarization streams are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, . . .
Date: 04/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077969 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077969
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Blum L.
Title: Transverse eV ion heating by random electric field fluctuations in the plasmasphere
Abstract: Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2–3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse. . .
Date: 02/2017 Publisher: Physics of Plasmas DOI: 10.1063/1.4976713 Available at: http://aip.scitation.org/doi/abs/10.1063/1.4976713
More Details
Electromagnetic ion cyclotron (EMIC) waves
Authors: Yu J., Li L.Y., Cao J. B., Yuan Z. G., Reeves G D, et al.
Title: Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement
Abstract: By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*≥ 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°-150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|< 0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021460 Available at: http://doi.wiley.com/10.1002/2015JA021460http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021460
More Details
electromagnetic ion cyclotron waves
Authors: Ma Q, Li W, Yue C., Thorne R M, Bortnik J, et al.
Title: Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere
Abstract: Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth's magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen‐ and helium‐band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi‐linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen‐ and helium‐band EMIC waves, respectively. Moreover, we fou. . .
Date: 06/2019 Publisher: Geophysical Research Letters Pages: 6258 - 6267 DOI: 10.1029/2019GL083513 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083513
More Details
Authors: Gamayunov K. V., Engebretson M. J., Zhang M., and Rassoul H. K.
Title: Model of electromagnetic ion cyclotron waves in the inner magnetosphere
Abstract: The evolution of He+-mode electromagnetic ion cyclotron (EMIC) waves is studied inside the geostationary orbit using our global model of ring current (RC) ions, electric field, plasmasphere, and EMIC waves. In contrast to the approach previously used by Gamayunov et al. (2009), however, we do not use the bounce-averaged wave kinetic equation but instead use a complete, nonbounce-averaged, equation to model the evolution of EMIC wave power spectral density, including off-equatorial wave dynamics. The major results of our study can be summarized as follows. (1) The thermal background level for EMIC waves is too low to allow waves to grow up to the observable level during one pass between the “bi-ion latitudes” (the latitudes where the given wave frequency is equal to the O+–He+ bi-io. . .
Date: 09/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 7541 - 7565 DOI: 10.1002/jgra.v119.910.1002/2014JA020032 Available at: http://doi.wiley.com/10.1002/jgra.v119.9http://doi.wiley.com/10.1002/2014JA020032
More Details
Authors: He Fengming, Cao Xing, Ni Binbin, Xiang Zheng, Zhou Chen, et al.
Title: Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study
Abstract: Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect of all EMIC emissions and the relative roles of each band in diffusing radiation belt relativistic electrons under realistic circumstances. Our quantitative results, obtained by quasi-linear diffusion rate computations and 1-D pure pitch angle diffusion simulations, de. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022483 Available at: http://doi.wiley.com/10.1002/2016JA022483
More Details
electromagnetic ion-cyclotron
Authors: Clilverd Mark A., Duthie Roger, Hardman Rachael, Hendry Aaron T., Rodger Craig J., et al.
Title: Electron precipitation from EMIC waves: a case study from 31 May 2013
Abstract: On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, i. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021090 Available at: http://doi.wiley.com/10.1002/2015JA021090
More Details
Electromagnetic wave
Authors: Ganguli G., Tejero E., Crabtree C., Amatucci W., and Rudakov L.
Title: Generation of electromagnetic waves in the very low frequency band by velocity gradient
Abstract: It is shown that a magnetized plasma layer with a velocity gradient in the flow perpendicular to the ambient magnetic field is unstable to waves in the Very Low Frequency band that spans the ion and electron gyrofrequencies. The waves are formally electromagnetic. However, depending on wave vector k⎯⎯=kc/ωpe (normalized by the electron skin depth) and the obliqueness, k⊥/k|| , where k⊥,∣∣∣∣ are wave vectors perpendicular and parallel to the magnetic field, the waves are closer to electrostatic in nature when k⎯⎯≫1 and k⊥≫k|| and electromagnetic otherwise. Inhomogeneous transverse flows are generated in plasma that contains a static electric field perpendicular to the magnetic field, a configuration that may naturally arise in the boundary layer between plasmas of. . .
Date: 01/2014 Publisher: Physics of Plasmas Pages: 012107 DOI: 10.1063/1.4862032 Available at: http://scitation.aip.org/content/aip/journal/pop/21/1/10.1063/1.4862032
More Details
electromagnetic waves
Authors: Zhu Hui, Shprits Yuri Y, Chen Lunjin, Liu Xu, and Kellerman Adam C.
Title: An event on simultaneous amplification of exohiss and chorus waves associated with electron density enhancements
Abstract: Whistler mode exohiss are the structureless hiss waves observed outside the plasmapause with featured equatorward Poynting flux. An event of the amplification of exohiss as well as chorus waves was recorded by Van Allen Probes during the recovery phase of a weak geomagnetic storm. Amplitudes of both types of the waves showed a significant increase at the regions of electron density enhancements. It is found that the electrons resonant with exohiss and chorus showed moderate pitch‐angle anisotropies. The ratio of the number of electrons resonating with exohiss to total electron number presented in‐phase correlation with density variations, which suggests that exohiss can be amplified due to electron density enhancement in terms of cyclotron instability. The calculation of linear growth . . .
Date: 10/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2017JA025023 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2017JA025023
More Details
Electromagnetics
Authors: Brito Thiago V.
Title: Precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere
Abstract: There is a renewed interest in the study of the radiation belts with the recent launch of the Van Allen Probes satellites. The mechanisms that drive the global response of the radiation belts to geomagnetic storms are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool for studying the dynamics of these MeV energetic particles. ACE satellite measurements of the MHD solar wind parameters are used as the upstream boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields, used to drive electrons in 2D and 3D test particle simulations. In this study simulations were performed to investigate energization and loss of energetic radiation belt electrons. The response of the radiation belts to a CM. . .
Date: DOI: N/A Available at: http://search.proquest.com/docview/1611957223?accountid=27702
More Details
electron
Authors: Ripoll J.-F., Albert J M, and Cunningham G. S.
Title: Electron lifetimes from narrowband wave-particle interactions within the plasmasphere
Abstract: This paper is devoted to the systematic study of electron lifetimes from narrowband wave-particle interactions within the plasmasphere. It relies on a new formulation of the bounce-averaged quasi-linear pitch angle diffusion coefficients parameterized by a single frequency, ω, and wave normal angle, θ. We first show that the diffusion coefficients scale with ω/Ωce, where Ωce is the equatorial electron gyrofrequency, and that maximal pitch angle diffusion occurs along the line α0 = π/2–θ, where α0 is the equatorial pitch angle. Lifetimes are computed for L shell values in the range [1.5, 3.5] and energies, E, in the range [0.1, 6] MeV as a function of frequency and wave normal angle. The maximal pitch angle associated with a given lifetime is also given, revealing the frequen. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020217 Available at: http://doi.wiley.com/10.1002/2014JA020217
More Details
Authors: Ripoll J.-F., Chen Y., Fennell J, and Friedel R
Title: On long decays of electrons in the vicinity of the slot region observed by HEO3
Abstract: Long decay periods of electron counts, which follow abrupt rises and last from weeks to months, have been observed by the HEO3 spacecraft in the vicinity of the slot region between the years 1998 and 2007. During the most stable decay periods as selected, e-folding timescales are extracted and statistically analyzed from observations as a function of L-shell and electron energy. A challenge is to reproduce the observed timescales from simulations of pitch angle diffusion by three acting waves–the plasmaspheric hiss, lightning-generated whistlers, and VLF transmitter waves. We perform full numerical simulations to accurately compute electron lifetimes. We choose to use the method and wave parameters proposed by Abel & Thorne [1998] with the goal to assess whether they can reproduce lifeti. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020449 Available at: http://doi.wiley.com/10.1002/2014JA020449
More Details
Authors: Maldonado Armando A., Chen Lunjin, Claudepierre Seth G., Bortnik Jacob, Thorne Richard M, et al.
Title: Electron butterfly distribution modulation by magnetosonic waves
Abstract: The butterfly pitch angle distribution is observed as a dip in an otherwise normal distribution of electrons centered about αeq=90°. During storm times, the formation of the butterfly distribution on the nightside magnetosphere has been attributed to L shell splitting combined with magnetopause shadowing and strong positive radial flux gradients. It has been shown that this distribution can be caused by combined chorus and magnetosonic wave scattering where the two waves work together but at different local times. Presented in our study is an event on 21 August 2013, using Van Allen Probe measurements, where a butterfly distribution formation is modulated by local magnetosonic coherent magnetosonic waves intensity. Transition from normal to butterfly distributions coincides with rising m. . .
Date: 04/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068161 Available at: http://doi.wiley.com/10.1002/2016GL068161http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2016GL068161http://api.wiley.com/onlinelibrary/chorus/v1/articles/10.1002%2F2016GL068161
More Details
Authors: Kanekal S G, Baker D N, Fennell J. F., Jones A., Schiller Q., et al.
Title: Prompt acceleration of magnetospheric electrons to ultrarelativistic energies by the 17 March 2015 interplanetary shock
Abstract: Trapped electrons in Earth's outer Van Allen radiation belt are influenced profoundly by solar phenomena such as high-speed solar wind streams, coronal mass ejections (CME), and interplanetary (IP) shocks. In particular, strong IP shocks compress the magnetosphere suddenly and result in rapid energization of electrons within minutes. It is believed that the electric fields induced by the rapid change in the geomagnetic field are responsible for the energization. During the latter part of March 2015, a CME impact led to the most powerful geomagnetic storm (minimum Dst = −223 nT at 17 March, 23 UT) observed not only during the Van Allen Probe era but also the entire preceding decade. Magnetospheric response in the outer radiation belt eventually resulted in elevated levels of energized ele. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7622 - 7635 DOI: 10.1002/2016JA022596 Available at: http://doi.wiley.com/10.1002/2016JA022596
More Details
Authors: He Zhaoguo, Chen Lunjin, Liu Xu, Zhu Hui, Liu Si, et al.
Title: Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes
Abstract: The generation of a high‐frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (∼10−6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1–2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally insi. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 1141 - 1148 DOI: 10.1029/2018GL081578 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081578
More Details
Authors: Schiller Q., Tu W., Ali A. F., Li X, Godinez H. C., et al.
Title: Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons
Abstract: The most significant unknown regarding relativistic electrons in Earth's outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13–14 January 2013 enhancement event to isolate transport,. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023093 Available at: http://doi.wiley.com/10.1002/2016JA023093
More Details
Electron acceleration
Authors: Agapitov O., Drake J. F., Vasko I., Mozer F S, Artemyev A., et al.
Title: Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave‐particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high‐amplitude whistlers suggest the importance of nonlinear wave‐particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, pres. . .
Date: 03/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076957 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076957
More Details
Authors: Yu J., Li L. Y., Cui J., Cao J. B., and Wang J.
Title: Effect of Low‐Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere
Abstract: In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly‐like electron pitch angle distributions and the emission of low‐harmonic (LH) fast magnetosonic (MS) waves inside the high‐density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly‐like distributions for both events (near‐equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low‐energy electrons (<~150 keV) show butterfly‐like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different‐energy electrons through the bounc. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026328 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026328
More Details
Authors: Yang Chang, Su Zhenpeng, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region
Abstract: Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct . . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073116 Available at: http://doi.wiley.com/10.1002/2017GL073116
More Details
Authors: Souza V. M., Lopez R. E., Jauer P. R., Sibeck D G, Pham K., et al.
Title: Acceleration of radiation belt electrons and the role of the average interplanetary magnetic field B z component in high speed streams
Abstract: In this study we examine the recovery of relativistic radiation belt electrons on November 15-16, 2014, after a previous reduction in the electron flux resulting from the passage of a Corotating Interaction Region (CIR). Following the CIR, there was a period of high-speed streams characterized by large, nonlinear fluctuations in the interplanetary magnetic field (IMF) components. However, the outer radiation belt electron flux remained at a low level for several days before it increased in two major steps. The first increase is associated with the IMF background field turning from slightly northward on average, to slightly southward on average. The second major increase is associated with an increase in the solar wind velocity during a period of southward average IMF background field. We p. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024187 Available at: onlinelibrary.wiley.com/doi/10.1002/2017JA024187/full
More Details
Authors: Li W, Thorne R M, Bortnik J, Baker D N, Reeves G D, et al.
Title: Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis
Abstract: Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and . . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065342 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2015GL065342/abstract
More Details
Authors: Su Zhenpeng, Zhu Hui, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract: We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by RBSP and THEMIS satellites, and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L > 6.07 over about 6 hours, with up to four orders of magnitude enhancement in the 30 keV-5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (~0.1 MeV) and relativistic (2-5 MeV) electron . . .
Date: 12/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020709 Available at: http://doi.wiley.com/10.1002/2014JA020709
More Details
Authors: Lee Jongkil, Kim Kyung-Chan, Giuseppe Romeo, Ukhorskiy Sasha, Sibeck David, et al.
Title: Space Weather Operation at KASI with Van Allen Probes Beacon Signals
Abstract: The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth's radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space weather conditions at geostationary orbit (GEO) by highlighting the Saint Patrick's Day storm of 2015. During that storm, Probe-A observed a significant increase in the relativistic electron flux at 3 RE. Those electrons diffused outward resulting in a large increase of the electron fl. . .
Date: 01/2018 Publisher: Space Weather DOI: 10.1002/2017SW001726 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017SW001726/full
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Drake J. F., et al.
Title: Electron holes in the outer radiation belt: Characteristics and their role in electron energization
Abstract: Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that i. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023083 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023083/full
More Details
Authors: Zhang X.‐J., Mourenas D., Artemyev A. V., Angelopoulos V, Bortnik J, et al.
Title: Nonlinear Electron Interaction With Intense Chorus Waves: Statistics of Occurrence Rates
Abstract: A comprehensive statistical analysis on 8 years of lower‐band chorus wave packets measured by the Van Allen Probes and THEMIS spacecraft is performed to examine whether, when, and where these waves are above the theoretical threshold for nonlinear resonant wave‐particle interaction. We find that ∼5–30% of all chorus waves interact nonlinearly with ∼30‐ to 300‐keV electrons possessing equatorial pitch angles of >40° in the outer radiation belt, especially during disturbed (AE>500 nT) periods with energetic particles associated with injections from the plasma sheet. Such considerable occurrence rates of nonlinear interactions imply that the evolution of energetic electron fluxes should be dominated by nonlinear effects, rather than by quasi‐linear diffusion as commonly assum. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083833 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083833
More Details
Authors: Li W, Ma Q, Thorne R M, Bortnik J, Zhang X.-J., et al.
Title: Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations
Abstract: Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth's radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical processes during the recovery phase of this large storm using a 3-D diffusion simulation. By quantitatively comparing the observed and simulated electron evolution, we found that chorus plays a critical role in accelerating electrons up to several MeV near the developing peak loca. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 5520 - 5536 DOI: 10.1002/jgra.v121.610.1002/2016JA022400 Available at: http://doi.wiley.com/10.1002/2016JA022400
More Details
electron acceleration and loss
Authors: Ma Q, Li W, Thorne R M, Nishimura Y., Zhang X.-J., et al.
Title: Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Abstract: The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusive movement in differential energy fluxes, and the radial extent to which electrons can penetra. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022507 Available at: http://doi.wiley.com/10.1002/2016JA022507
More Details
electron accelerationl whistler mode waves
Authors: Ma Q, Li W, Bortnik J, Thorne R M, Chu X., et al.
Title: Quantitative Evaluation of Radial Diffusion and Local Acceleration Processes During GEM Challenge Events
Abstract: We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17–18 March 2013 and non–storm time of 19–20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17–18 March 2013, the SYM‐H minimum reached −130 nT, intense chorus waves (peak Bw ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV to several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19–20 September 2013, th. . .
Date: 03/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA025114 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017JA025114
More Details
Electron acoustic shock
Authors: Lotekar Ajay, Kakad Amar, and Kakad Bharati
Title: Formation of Asymmetric Electron Acoustic Double Layers in the Earth's Inner Magnetosphere
Abstract: The Van Allen Probes have observed both symmetric and asymmetric bipolar electric field structures in the Earth's inner magnetosphere. In general, the symmetric bipolar structures are identified as electron‐phase space holes, whereas the asymmetric structures are interpreted as electron acoustic double layers (EADLs). The generation mechanism of these EADLs is not entirely understood yet. We have modeled the EADLs observed on 13 November 2012 by Van Allen Probe‐B. We performed a fluid simulation of the EADLs and tracked their formation and evolution in the simulation. We found that the localized depletion and enhancement in the electron populations act as a perturbation to excite the symmetric bipolar electron acoustic solitary waves, which later evolve into the EADLs. The Ponderomotiv. . .
Date: 08/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 6896 - 6905 DOI: 10.1029/2018JA026303 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026303
More Details
electron acoustic waves
Authors: Agapitov O. V., Krasnoselskikh V., Mozer F S, Artemyev A. V., and Volokitin A. S.
Title: Generation of nonlinear Electric Field Bursts in the outer radiation belt through the parametric decay of whistler waves
Abstract: Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well as analytically, using Van Allen Probes data. The resulting electron acoustic wave is considered to be the source of electron scale TDS. The measured parameters of the three waves (two whistlers and the electron acoustic wave) are in a good agreement with an assumption . . .
Date: 05/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064145 Available at: http://doi.wiley.com/10.1002/2015GL064145
More Details
Authors: Agapitov O., Drake J. F., Vasko I., Mozer F S, Artemyev A., et al.
Title: Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave‐particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high‐amplitude whistlers suggest the importance of nonlinear wave‐particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, pres. . .
Date: 03/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076957 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2017GL076957
More Details
electron and ion precipitation
Authors: Chen Margaret W., Lemon Colby L., Hecht James, Sazykin Stanislav, Wolf Richard A., et al.
Title: Diffuse Auroral Electron and Ion Precipitation Effects on RCM‐E Comparisons with Satellite Data During the March 17, 2013 Storm
Abstract: Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self‐consistent Rice Convection Model Equilibrium (RCM‐E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnig. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026545 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026545
More Details
Electron beams
Authors: Crabtree Chris, Ganguli Gurudas, and Tejero Erik
Title: Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas
Abstract: Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete frequency hopping that results in a faster apparent frequency chirp rate, (3) fast frequency changes near the sub-element boundaries, and (4) harmonic generation. In this paper, we develop a finite dimensional self-consistent Hamiltonian model for the evolution of the re. . .
Date: 03/2017 Publisher: Physics of Plasmas Pages: 056501 DOI: 10.1063/1.4977539 Available at: http://aip.scitation.org/doi/10.1063/1.4977539
More Details
electron cyclotron harmonic wave
Authors: Gao Zhonglei, Su Zhenpeng, Xiao Fuliang, Summers Danny, Liu Nigang, et al.
Title: Nonlinear coupling between whistler-mode chorus and electron cyclotron harmonic waves in the magnetosphere
Abstract: Electromagnetic whistler‐mode chorus and electrostatic electron cyclotron harmonic (ECH) waves can contribute significantly to auroral electron precipitation and radiation belt electron acceleration. In the past, linear and nonlinear wave‐particle interactions have been proposed to explain the occurrences of these magnetospheric waves. By analyzing Van Allen Probes data, we present here the first evidence for nonlinear coupling between chorus and ECH waves. The sum‐frequency and difference‐frequency interactions produced the ECH sidebands with discrete frequency sweeping structures exactly corresponding to the chorus rising tones. The newly‐generated weak sidebands did not satisfy the original electrostatic wave dispersion relation. After the generation of chorus and normal ECH w. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080635 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080635
More Details
Electron density
Authors: Kurth W S, De Pascuale S., Faden J. B., Kletzing C A, Hospodarsky G B, et al.
Title: Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes
Abstract: The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing . . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020857 Available at: http://doi.wiley.com/10.1002/2014JA020857
More Details
electron distribution
Authors: Khazanov G. V., Tripathi A. K., Sibeck D., Himwich E., Glocer A., et al.
Title: Electron distribution function formation in regions of diffuse aurora
Abstract: The precipitation of high-energy magnetospheric electrons (E ∼ 600 eV–10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, ∼700–800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly in. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics Pages: 9891–9915 DOI: 10.1002/2015JA021728 Available at: http://doi.wiley.com/10.1002/2015JA021728http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021728
More Details
Authors: Mourenas D., Artemyev A. V., Agapitov O.V., Krasnoselskikh V., and Li W
Title: Approximate analytical solutions for the trapped electron distribution due to quasi-linear diffusion by whistler-mode waves
Abstract: The distribution of trapped energetic electrons inside the Earth's radiation belts is the focus of intense studies aiming at better describing the evolution of the space environment in the presence of various disturbances induced by the solar wind or by an enhanced lightning activity. Such studies are usually performed by means of comparisons with full numerical simulations solving the Fokker-Planck quasi-linear diffusion equation for the particle distribution function. Here, we present for the first time approximate but realistic analytical solutions for the electron distribution, which are shown to be in good agreement with exact numerical solutions in situations where resonant scattering of energetic electrons by whistler-mode hiss, lightning-generated or chorus waves, is the dominant p. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020443 Available at: http://doi.wiley.com/10.1002/2014JA020443
More Details
electron drift
Authors: Min Kyungguk, Lee Jeongwoo, and Keika Kunihiro
Title: Chorus wave generation near the dawnside magnetopause due to drift shell splitting of substorm-injected electrons
Abstract: We study the relationship between the electron injection and the chorus waves during a substorm event on 23 March 2007. The chorus waves were detected at high geomagnetic latitude (∼70°S) Antarctic observatories in the range of 0600–0900 h in magnetic local time (MLT). Electrons drifting from the injection event were measured by two LANL spacecraft at 0300 and 0900 MLT. The mapping of auroral brightening areas to the magnetic equator shows that the injection occurred in an MLT range of 2200–2400. This estimate is consistent with observations by the THEMIS A, B, and D spacecraft (which were located at 2100 MLT and did not observe electron injections). Our backward model tracing from the magnetic equator near the dawnside magnetopause (which magnetically connects to the Antar. . .
Date: 10/2010 Publisher: American Geophysical Union DOI: 10.1029/2010JA015474
More Details
electron dropout echo
Authors: Hao Y. X., Zong Q.-G., Zhou X.-Z., Fu S. Y., Rankin R, et al.
Title: Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations
Abstract: On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ∼1MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or “dropout echoes”, constitute a new phenomenon referred to as a “drifting electron dropout” with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ∼1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons . . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069140 Available at: http://doi.wiley.com/10.1002/2016GL069140h
More Details
Electron energization
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Electron flux enhancements at L  = 4.2 observed by Global Positioning System satellites: Relationship with solar wind and geomagnetic activity
Abstract: Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009‐2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non‐storm (or weak storm) times. Flux enhancements of 4 MeV electrons outside the plasmasphere occur during periods of low Pdyn and high AE. We perform superposed epoch analyses of GPS electron fluxes, along with solar wind and geomagnetic indices, 40 keV electron flu. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025497 Available at: http://doi.wiley.com/10.1029/2018JA025497http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025497/fullpdfhttps://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F2018JA025497
More Details
electron energy
Authors: Kellerman A. C., Shprits Y Y, Makarevich R. A., Spanswick E., Donovan E., et al.
Title: Characterization of the energy-dependent response of riometer absorption
Abstract: Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth's ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth's magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlati. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020027 Available at: http://doi.wiley.com/10.1002/2014JA020027
More Details
electron flux
Authors: Pandya Megha, Veenadhari B., Ebihara Y., Kanekal S.G., and Baker D.N.
Title: Variation of Radiation belt electron flux during CME and CIR driven geomagnetic storms: Van Allen Probes observations
Abstract: Relativistic electron flux responses in the inner magnetosphere are investigated for 28 magnetic storms driven by Corotating Interaction Region (CIR) and 27 magnetic storms driven by Coronal Mass Ejection (CME), using data from the Relativistic Electron‐Proton Telescope (REPT) instrument on board Van‐Allen Probes from Oct‐2012 to May‐2017. In this present study we analyze the role of CIRs and CMEs in electron dynamics by sorting the electron fluxes in terms of averaged solar wind parameters, L‐values, and energies. The major outcomes from our study are: (i) At L = 3 and E = 3.4 MeV, for >70% cases the electron flux remains stable, while at L = 5, for ~82% cases it changes with the geomagnetic conditions. (ii) At L = 5, ~53% of the CIR storms and 30% of the CME storms show electro. . .
Date: 07/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026771 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026771
More Details
electron flux decay
Authors: Ma Q, Li W, Thorne R M, Bortnik J, Reeves G D, et al.
Title: Characteristic energy range of electron scattering due to plasmaspheric hiss
Abstract: We investigate the characteristic energy range of electron flux decay due to the interaction with plasmaspheric hiss in the Earth's inner magnetosphere. The Van Allen Probes have measured the energetic electron flux decay profiles in the Earth's outer radiation belt during a quiet period following the geomagnetic storm that occurred on 7 November 2015. The observed energy of significant electron decay increases with decreasing L shell and is well correlated with the energy band corresponding to the first adiabatic invariant μ = 4–200 MeV/G. The electron diffusion coefficients due to hiss scattering are calculated at L = 2–6, and the modeled energy band of effective pitch angle scattering is also well correlated with the constant μ lines and is consistent with the observed e. . .
Date: 11/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023311 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023311/full
More Details
Electron Flux Dropouts
Authors: Sigsbee K., Kletzing C A, Smith C W, MacDowall Robert, Spence Harlan, et al.
Title: Van Allen Probes, THEMIS, GOES, and Cluster Observations of EMIC waves, ULF pulsations, and an electron flux dropout
Abstract: We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, THEMIS-A (P5), Cluster 2, and Geostationary Operational Environmental Satellite (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 hours from 12–14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ EMIC wa. . .
Date: 01/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020877 Available at: http://doi.wiley.com/10.1002/2014JA020877
More Details
Electron flux enhancement
Authors: Hua Man, Li Wen, Ma Qianli, Ni Binbin, Nishimura Yukitoshi, et al.
Title: Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5
Abstract: We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three‐dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave‐particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave‐p. . .
Date: 09/2019 Publisher: Geophysical Research Letters Pages: 10967 - 10976 DOI: 10.1029/2019GL084822 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084822
More Details
Electron flux enhancements
Authors: Zhang X.-J., Mourenas D., Artemyev A. V., Angelopoulos V, and Thorne R M
Title: Electron flux enhancements at L  = 4.2 observed by Global Positioning System satellites: Relationship with solar wind and geomagnetic activity
Abstract: Determining solar wind and geomagnetic activity parameters most favorable to strong electron flux enhancements is an important step towards forecasting radiation belt dynamics. Using electron flux measurements from Global Positioning System satellites at L = 4.2 in 2009‐2016, we seek statistical relationships between flux enhancements at different energies and solar wind dynamic pressure Pdyn, AE, and Kp, from hundreds of events inside and outside the plasmasphere. Most ⩾1 MeV electron flux enhancements occur during non‐storm (or weak storm) times. Flux enhancements of 4 MeV electrons outside the plasmasphere occur during periods of low Pdyn and high AE. We perform superposed epoch analyses of GPS electron fluxes, along with solar wind and geomagnetic indices, 40 keV electron flu. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025497 Available at: http://doi.wiley.com/10.1029/2018JA025497http://onlinelibrary.wiley.com/wol1/doi/10.1029/2018JA025497/fullpdfhttps://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F2018JA025497
More Details
electron hole
Authors: Contel O., Nakamura R, Breuillard H., Argall M. R., Graham D. B., et al.
Title: Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm
Abstract: We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing, and with a smaller lower-hybrid drift wave activity. Electromag. . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024550 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024550/full
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F, Artemyev A. V., and Jovanovic D.
Title: Magnetic field depression within electron holes
Abstract: We analyze electron holes that are spikes of the electrostatic field (up to 500 mV/m) observed by Van Allen Probes in the outer radiation belt. The unexpected feature is the magnetic field depression of about several tens of picotesla within many of the spikes. The earlier observations showed amplification or negligible perturbations of the magnetic field within the electron holes. We suggest that the observed magnetic field depression is due to the diamagnetic current of hot and highly anisotropic population of electrons trapped within the electron holes. The required trapped population should have a density up to 65% of the background plasma density, a temperature up to several keV, and a temperature anisotropy T⊥/T∥∼2. We argue that the observed electron holes could be generated. . .
Date: 04/2015 Publisher: Geophysical Research Letters Pages: 2123 - 2129 DOI: 10.1002/2015GL063370 Available at: http://doi.wiley.com/10.1002/2015GL063370
More Details

Pages