Biblio

Found 26 results
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
D
Authors: Drozdov A. Y., Shprits Y Y, Orlova K.G., Kellerman A. C., Subbotin D. A., et al.
Title: Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements
Abstract: In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an . . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020637 Available at: http://doi.wiley.com/10.1002/2014JA020637
More Details
Authors: Drozdov A. Y., Shprits Y Y, Aseev N. A., Kellerman A. C., and Reeves G D
Title: Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport
Abstract: Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, in. . .
Date: 01/2017 Publisher: Space Weather Pages: 150 - 162 DOI: 10.1002/swe.v15.110.1002/2016SW001426 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016SW001426/full
More Details
Authors: Drozdov A. Y., Shprits Y Y, Usanova M. E., Aseev N. A., Kellerman A. C., et al.
Title: EMIC wave parameterization in the long-term VERB code simulation
Abstract: Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we co. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024389 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024389/full
More Details
Authors: Drake J. F., Agapitov O. V., and Mozer F S
Title: The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves
Abstract: The dynamics and structure of whistler turbulence relevant to electron acceleration in the Earth's outer radiation belt is explored with simulations and comparisons with observations. An initial state with an electron temperature anisotropy in a spatially localized domain drives whistlers which scatter electrons. An outward propagating front of whistlers and hot electrons nonlinearly evolves to form regions of intense parallel electric field with structure similar to observations. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063528 Available at: http://doi.wiley.com/10.1002/2015GL063528
More Details
Authors: Dixon P., MacDonald E A, Funsten H O, Glocer A., Grande M., et al.
Title: Multipoint observations of the open-closed field line boundary as observed by the Van Allen Probes and geostationary satellites during the November 14 th 2012 geomagnetic storm
Abstract: The twin Van Allen Probes spacecraft witnessed a series of lobe encounters between 0200 and 0515 UT on November 14th 2012. Although lobe entry had been observed previously by the other spacecraft, the two Van Allen Probe spacecraft allow us to observe the motion of the boundary for the first time. Moreover, this event is unique in that it consists of a series of six quasi-periodic lobe entries. The events occurred on the dawn flank between 4 and 6.6 local time and at altitudes between 5.6 and 6.2 RE. During the events Dst dropped to less than -100nT with the IMF being strongly southward (Bz = −15nT) and eastward (By = 20 nT). Observations by LANL GEO spacecraft at geosynchronous orbit also show lobe encounters in the northern hemisphere and on the dusk flank. The two spacecraf. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020883 Available at: http://doi.wiley.com/10.1002/2014JA020883
More Details
Authors: Desorgher L, ühler P, Zehnder A, and ückiger E O
Title: Simulation of the outer radiation belt electron flux decrease during the March 26, 1995, magnetic storm
Abstract: In this paper we study the variation of the relativistic electron fluxes in the Earth's outer radiation belt during the March 26, 1995, magnetic storm. Using observations by the radiation environment monitor (REM) on board the space technology research vehicle (STRV-Ib), we discuss the flux decrease and possible loss of relativistic electrons during the storm main phase. In order to explain the observations we have performed fully adiabatic and guiding center simulations for relativistic equatorial electrons in the nonstationary Tsygarienko96 magnetospheric magnetic field model. In our simulations the drift of electrons through the magnetopause was considered as a loss process. We present our model results and discuss their dependence on the magnetospheric magnetic and electric field model. . .
Date: 09/2000 Publisher: Journal of Geophysical Research Pages: 21211 DOI: 10.1029/2000JA900060 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2000JA900060/full
More Details
Authors: Denton M. H., Reeves G D, Larsen B A, Friedel R. F. W., Thomsen M F, et al.
Title: On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions
Abstract: Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alam. . .
Date: 02/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 1789–1802 DOI: 10.1002/2016JA023648 Available at: onlinelibrary.wiley.com/doi/10.1002/2016JA023648/full
More Details
Authors: Denton M. H., Thomsen M F, Jordanova V K, Henderson M G, Borovsky J E, et al.
Title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
Abstract: Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied. . .
Date: 04/2015 Publisher: Space Weather DOI: 10.1002/2015SW001168 Available at: http://doi.wiley.com/10.1002/2015SW001168
More Details
Authors: Denton M. H., Reeves G. D., Larsen B. A., Friedel R. F. W., Thomsen M. F., et al.
Title: On the origin of low-energy electrons in the inner magnetosphere: Fluxes and pitch-angle distributions
Abstract: Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected previously. This study concerns observations of low-energy electrons made by the Helium Oxygen Proton Electron instrument on board the Van Allen Probes satellites and also observations from geosynchronous orbit made by the Magnetospheric Plasma Analyzer on board Los Alam. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023648 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023648
More Details
Authors: Denton M. H., Thomsen M F, Reeves G D, Larsen B A, Henderson M G, et al.
Title: The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries
Abstract: The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant ion in the plasma sheet in the calm-to-storm transition. However, the energy-flux of each ion changes in a quasi-linear manner during extended calm intervals. Heavy ions (O+ and He+) become increasingly important during such periods as charge-exchange reactions result in . . .
Date: 10/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024475 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024475/full
More Details
Authors: Denton M. H., Reeves G. E., Thomsen M F, Henderson M G, Friedel R H W, et al.
Title: The complex nature of storm-time ion dynamics: Transport and local acceleration
Abstract: Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma a. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070878 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016GL070878/abstract
More Details
Authors: Demekhov A. G., Manninen J., ík O., and Titova E. E.
Title: Conjugate Ground-Spacecraft Observations of VLF Chorus Elements
Abstract: We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of −12.4∘ close to the plasmapause and inside a localized density . . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,735 - 11,744 DOI: 10.1002/2017GL076139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076139/full
More Details
Authors: Degeling A W, and Rankin R
Title: Resonant drift echoes in electron phase space density produced by dayside Pc5 waves following a geomagnetic storm
Abstract: [1] The interaction between relativistic, equatorially mirroring electrons and Pc5 Ultra Low Frequency (ULF) waves in the magnetosphere is investigated using a numerical MagnetoHydroDynamic (MHD) model for waves and a test-kinetic model for electron phase space density (PSD). The temporal and spatial characteristics of a ULF wave packet are constrained using ground-based observations of narrowband ULF activity following a geomagnetic storm on 24 March 1991, which occurred from 1200 to 1340 Universal Time (UT). A salient feature of the ULF waves during this interval was the apparent localization of the ULF wave power to the dayside of the magnetosphere and the antisunward propagation of ULF wave phase in the morning and afternoon sectors. This is interpreted to imply a localized source of U. . .
Date: 10/2008 Publisher: Journal of Geophysical Research DOI: 10.1029/2008JA013254 Available at: http://onlinelibrary.wiley.com/doi/10.1029/2008JA013254/abstract
More Details
Authors: Degeling A W, Rankin R, and Zong Q.-G.
Title: Modeling radiation belt electron acceleration by ULF fast mode waves, launched by solar wind dynamic pressure fluctuations
Abstract: We investigate the magnetospheric MHD and energetic electron response to a Storm Sudden Commencement (SSC) and subsequent magnetopause buffeting, focusing on an interval following an SSC event on 25 November 2001. We find that the electron flux signatures observed by LANL, Cluster, and GOES spacecraft during this event can largely be reproduced using an advective kinetic model for electron phase space density, using externally prescribed electromagnetic field inputs, (herein described as a “test-kinetic model”) with electromagnetic field inputs provided by a 2-D linear ideal MHD model for ULF waves. In particular, we find modulations in electron flux phase shifted by 90° from the local azimuthal ULF wave electric field (Eφ) and a net enhancement in electron flux after 1.5 h for energ. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2013JA019672 Available at: http://doi.wiley.com/10.1002/2013JA019672
More Details
Authors: Degeling A W, Rankin R, Kabin K, Marchand R, and Mann I R
Title: The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
Abstract: The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602–8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed in. . .
Date: 04/2007 Publisher: Planetary and Space Science Pages: 731 - 742 DOI: 10.1016/j.pss.2006.04.039 Available at: http://www.sciencedirect.com/science/article/pii/S0032063306002893
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Abstract: Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmasp. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021148 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
More Details
Authors: de Soria-Santacruz M., Orlova K. G., Martinez-Sanchez M., and Shprits Y Y
Title: Scattering rates of inner belt protons by EMIC waves: A comparison between test particle and diffusion simulations
Abstract: Inner belt energetic protons are a hindrance to development of space technologies. The emission of electromagnetic ion cyclotron (EMIC) waves from spaceborne transmitters has been proposed as a way to solve this problem. The interaction between particles and narrowband emissions has been typically studied using nonlinear test particle simulations. We show that this formulation results in a random walk of the inner belt protons in velocity space. In this paper we compute bounce-averaged pitch angle diffusion rates from test particle simulations and compare them to those of quasi-linear theory for quasi-monochromatic EMIC waves interacting with inner belt protons. We find that the quasi-linear solution is not sensitive to the frequency bandwidth for narrow distributions. Bounce-averaged diff. . .
Date: 09/2013 Publisher: Geophysical Research Letters Pages: 4793–4797 DOI: 10.1002/grl.50925 Available at: http://doi.wiley.com/10.1002/grl.50925
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis
Abstract: A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020941 Available at: http://doi.wiley.com/10.1002/2014JA020941
More Details
Authors: De Pascuale S., Jordanova V K, Goldstein J, Kletzing C A, Kurth W S, et al.
Title: Simulations of Van Allen Probes Plasmaspheric Electron Density Observations
Abstract: We simulate equatorial plasmaspheric electron densities using a physics‐based model (Cold PLasma, CPL; used in the ring current‐atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, respectively. Overall, CPL reproduces the radial extent of the plasmasphere to within a mean absolute difference of urn:x-wiley:jgra:media:jgra54637:jgra54637-math-0001 L. The model electric field responsible for E × B convection and the parameterization of geomagn. . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025776 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025776
More Details
Authors: Damiano P.A., Chaston C.C., Hull A.J., and Johnson J.R.
Title: Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations
Abstract: Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field‐aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self‐consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qualitatively accounts for electron observations near the equatorial plane and at higher latitudes. In conjunction with the highly field‐aligned plateaus, loss cone features are also evident, which result from the action of the upward‐directed wave parallel electr. . .
Date: 06/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077748 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077748
More Details
Authors: Dai Lei, Wang Chi, Duan Suping, He Zhaohai, Wygant John R., et al.
Title: Near-Earth Injection of MeV Electrons associated with Intense Dipolarization Electric Fields: Van Allen Probes observations
Abstract: Substorms generally inject 10s-100s keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the pre-midnight sector at L∼5.5, Van Allen Probes (RBSP)-A observed a large dipolarization electric field (50mV/m) over ∼40s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the in. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064955 Available at: http://doi.wiley.com/10.1002/2015GL064955
More Details
Authors: Dai L, Takahashi K, Wygant J R, Chen L, Bonnell J W, et al.
Title: Excitation of Poloidal standing Alfven waves through the drift resonance wave-particle interaction
Abstract: Drift-resonance wave-particle interaction is a fundamental collisionless plasma process studied extensively in theory. Using cross-spectral analysis of electric field, magnetic field, and ion flux data from the Van Allen Probe (Radiation Belt Storm Probes) spacecraft, we present direct evidence identifying the generation of a fundamental mode standing poloidal wave through drift-resonance interactions in the inner magnetosphere. Intense azimuthal electric field (Eφ) oscillations as large as 10mV/m are observed, associated with radial magnetic field (Br) oscillations in the dawn-noon sector near but south of the magnetic equator at L∼5. The observed wave period, Eφ/Br ratio and the 90° phase lag between Br and Eφ are all consistent with fundamental mode standing Poloidal waves. Phase . . .
Date: 08/2013 Publisher: Geophysical Research Letters DOI: 10.1002/grl.50800 Available at: http://onlinelibrary.wiley.com/doi/10.1002/grl.50800/full
More Details
Authors: Dai Lei, Takahashi Kazue, Lysak Robert, Wang Chi, Wygant John R., et al.
Title: Storm-time occurrence and Spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes Statistical study
Abstract: Poloidal ULF waves are capable of efficiently interacting with energetic particles in the ring current and the radiation belt. Using Van Allen Probes (RBSP) data from October 2012 to July 2014, we investigate the spatial distribution and storm-time occurrence of Pc4 (7-25 mHz) poloidal waves in the inner magnetosphere. Pc4 poloidal waves are sorted into two categories: waves with and without significant magnetic compressional components. Two types of poloidal waves have comparable occurrence rates, both of which are much higher during geomagnetic storms. The non-compressional poloidal waves mostly occur in the late recovery phase associated with an increase of Dst toward 0, suggesting that the decay of the ring current provides their free energy source. The occurrence of dayside compressio. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021134 Available at: http://doi.wiley.com/10.1002/2015JA021134
More Details
Authors: Dai Guyue, Su Zhenpeng, Liu Nigang, Wang Bin, Zheng Huinan, et al.
Title: Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections
Abstract: Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler‐mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high‐ and low‐density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082944
More Details
Authors: Dai Lei, Wygant John R., Cattell Cynthia A., Thaller Scott, Kersten Kris, et al.
Title: Evidence for injection of relativistic electrons into the Earth's outer radiation belt via intense substorm electric fields
Abstract: Observation and model results accumulated in the last decade indicate that substorms can promptly inject relativistic ‘killer’ electrons (≥MeV) in addition to 10–100 keV subrelativistic populations. Using measurements from Cluster, Polar, LANL, and GOES satellites near the midnight sector, we show in two events that intense electric fields, as large as 20 mV/m, associated with substorm dipolarization are associated with injections of relativistic electrons into the outer radiation belt. Enhancements of hundreds of keV electrons at dipolarization in the magnetotail can account for the injected MeV electrons through earthward transport. These observations provide evidence that substorm electric fields inject relativistic electrons by transporting magnetotail electrons into the outer . . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1133 - 1141 DOI: 10.1002/2014GL059228 Available at: http://doi.wiley.com/10.1002/2014GL059228
More Details
Authors: Da Silva L. A., Sibeck D., Alves L. R., Souza V. M., Jauer P. R., et al.
Title: Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014
Abstract: Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the co. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026184 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026184
More Details