Biblio

Found 36 results
Filters: First Letter Of Last Name is Y  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Y
Authors: Yue Chao, Bortnik Jacob, Li Wen, Ma Qianli, Gkioulidou Matina, et al.
Title: The composition of plasma inside geostationary orbit based on Van Allen Probes observations
Abstract: The composition of the inner magnetosphere is of great importance for determining the plasma pressure, and thus the currents and magnetic field configuration. In this study, we perform a statistical survey of equatorial plasma pressure distributions and investigate the relative contributions of ions and electron with different energies inside of geostationary orbit under two AE levels based on over sixty months of observations from the HOPE and RBSPICE mass spectrometers on board Van Allen Probes. We find that the total and partial pressures of different species increase significantly at high AE levels with Hydrogen (H+) pressure being dominant in the plasmasphere. The pressures of the heavy ions and electrons increase outside the plasmapause and develop a strong dawn‐dusk asymmetry with. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025344 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025344
More Details
Authors: Yue Chao, An Xin, Bortnik Jacob, Ma Qianli, Li Wen, et al.
Title: The relationship between the macroscopic state of electrons and the properties of chorus waves observed by the Van Allen Probes
Abstract: Plasma kinetic theory predicts that a sufficiently anisotropic electron distribution will excite whistler mode waves, which in turn relax the electron distribution in such a way as to create an upper bound on the relaxed electron anisotropy. Here using whistler mode chorus wave and plasma measurements by Van Allen Probes, we confirm that the electron distributions are well constrained by this instability to a marginally stable state in the whistler mode chorus waves generation region. Lower band chorus waves are organized by the electron β∥e into two distinct groups: (i) relatively large-amplitude, quasi-parallel waves with inline image and (ii) relatively small-amplitude, oblique waves with inline image. The upper band chorus waves also have enhanced amplitudes close to the instabili. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7804 - 7812 DOI: 10.1002/2016GL070084 Available at: http://doi.wiley.com/10.1002/2016GL070084
More Details
Authors: Yue Chao, Bortnik Jacob, Thorne Richard M, Ma Qianli, An Xin, et al.
Title: The characteristic pitch angle distributions of 1 eV to 600 keV protons near the equator based on Van Allen Probes observations
Abstract: Understanding the source and loss processes of various plasma populations is greatly aided by having accurate knowledge of their pitch angle distributions (PADs). Here, we statistically analyze ~1 eV to 600 keV hydrogen (H+) PADs near the geomagnetic equator in the inner magnetosphere based on Van Allen Probes measurements, to comprehensively investigate how the H+ PADs vary with different energies, magnetic local times (MLTs), L-shells, and geomagnetic conditions. Our survey clearly indicates four distinct populations with different PADs: (1) a pancake distribution of the plasmaspheric H+ at low L-shells except for dawn sector; (2) a bi-directional field-aligned distribution of the warm plasma cloak; (3) pancake or isotropic distributions of ring current H+; (4) radiation belt particles s. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024421 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024421/full
More Details
Authors: Yue Chao, Bortnik Jacob, Chen Lunjin, Ma Qianli, Thorne Richard M., et al.
Title: Transitional behavior of different energy protons based on Van Allen Probes observations
Abstract: Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow, and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here we statistically analyze ~1 eV to 50 keV hydrogen (H+) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H+ dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H+ behaviors within different energy rang. . .
Date: 01/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071324 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071324
More Details
Authors: Yue Chao, Jun Chae‐Woo, Bortnik Jacob, An Xin, Ma Qianli, et al.
Title: The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations
Abstract: Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left‐handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082633 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082633
More Details
Authors: Yue Chao, Li Wen, Nishimura Yukitoshi, Zong Qiugang, Ma Qianli, et al.
Title: Rapid enhancement of low-energy (<100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms
Abstract: Interactions between interplanetary (IP) shocks and the Earth's magnetosphere manifest many important space physics phenomena including low-energy ion flux enhancements and particle acceleration. In order to investigate the mechanisms driving shock-induced enhancement of low-energy ion flux, we have examined two IP shock events that occurred when the Van Allen Probes were located near the equator while ionospheric and ground observations were available around the spacecraft footprints. We have found that, associated with the shock arrival, electromagnetic fields intensified, and low-energy ion fluxes, including H+, He+, and O+, were enhanced dramatically in both the parallel and perpendicular directions. During the 2 October 2013 shock event, both parallel and perpendicular flux enhancemen. . .
Date: 06/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022808 Available at: http://doi.wiley.com/10.1002/2016JA022808
More Details
Authors: Yue Chao, Bortnik Jacob, Chen Lunjin, Ma Qianli, Thorne Richard M, et al.
Title: Transitional behavior of different energy protons based on Van Allen Probes observations
Abstract: Understanding the dynamical behavior of ~1 eV to 50 keV ions and identifying the energies at which the morphologies transit are important in that they involve the relative intensities and distributions of the large-scale electric and magnetic fields, the outflow and recombination rates. However, there have been only few direct observational investigations of the transition in drift behaviors of different energy ions before the Van Allen Probes era. Here, we statistically analyze ~1 eV to 50 keV Hydrogen (H+) differential flux distributions near geomagnetic equator by using Van Allen Probes observations to investigate the H+ dynamics under the regulation of large-scale electric and magnetic fields. Our survey clearly indicates three types of H+ behaviors within different energy ranges, whic. . .
Date: 12/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL071324 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016GL071324/full
More Details
Authors: Yue Chao, Chen Lunjin, Bortnik Jacob, Ma Qianli, Thorne Richard M, et al.
Title: The characteristic response of whistler mode waves to interplanetary shocks
Abstract: Magnetospheric whistler mode waves play a key role in regulating the dynamics of the electron radiation belts. Recent satellite observations indicate a significant influence of interplanetary (IP) shocks on whistler mode wave power in the inner magnetosphere. In this study, we statistically investigate the response of whistler mode chorus and plasmaspheric hiss to IP shocks based on Van Allen Probes and THEMIS satellite observations. Immediately after the IP shock arrival, chorus wave power is usually intensified, often at post-midnight to pre-noon sector, while plasmaspheric hiss wave power predominantly decreases near the dayside but intensifies near the nightside. We conclude that chorus wave intensification outside the plasmasphere is probably associated with the suprathermal electron . . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024574 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024574/full
More Details
Authors: Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Qiao Zheng, Yao Fei, et al.
Title: Cold Ion Heating by Magnetosonic Waves in a Density Cavity of the Plasmasphere
Abstract: Fast magnetosonic (MS) waves play an important role in the dynamics of the inner magnetosphere. Theoretical prediction and simulation have demonstrated that MS waves can heat cold ions. However, direct observational evidence of cold ion heating by MS waves has so far remained elusive. In this paper, we show a typical event of cold ion heating by magnetosonic waves in a density cavity of the plasmasphere with observations of the Van Allen Probe mission on 22 August 2013. During enhancements of the MS wave intensity in the density cavity, the fluxes of trapped H+ and He+ ions with energies of 10–100 eV were observed to increase, implying that cold plasmaspheric ions were heated through high-order resonances with the MS waves. Based on simultaneous observations of ring current protons, we h. . .
Date: 02/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024919 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024919/full
More Details
Authors: Yuan Zhigang, Yu Xiongdong, Wang Dedong, Huang Shiyong, Li Haimeng, et al.
Title: In situ evidence of the modification of the parallel propagation of EMIC waves by heated He + ions
Abstract: With observations of the Van Allen Probe B, we report in situ evidence of the modification of the parallel propagating electromagnetic ion cyclotron (EMIC) waves by heated He+ ions. In the outer boundary of the plasmasphere, accompanied with the He+ ion heating, the frequency bands of H+ and He+ for EMIC waves merged into each other, leading to the disappearance of a usual stop band between the gyrofrequency of He+ ions (ΩHe+) and the H+ cutoff frequency (ωH+co) in the cold plasma. Moreover, the dispersion relation for EMIC waves theoretically calculated with the observed plasma parameters also demonstrates that EMIC waves can indeed parallel propagate across ΩHe+. Therefore, the paper provides an in situ evidence of the modification of the parallel propagation of EMIC waves by heated H. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022573 Available at: http://doi.wiley.com/10.1002/2016JA022573
More Details
Authors: Yuan Zhigang, Yu Xiongdong, Huang Shiyong, Wang Dedong, and Funsten Herbert O.
Title: In situ observations of magnetosonic waves modulated by background plasma density
Abstract: We report in situ observations by the Van Allen Probe mission that magnetosonic (MS) waves are clearly relevant to appear relevant to the background plasma number density. As the satellite moved across dense and tenuous plasma alternatively, MS waves occurred only in lower density region. As the observed protons with ‘ring’ distributions provide free energy, local linear growth rates are calculated and show that magnetosonic waves can be locally excited in tenuous plasma. With variations of the background plasma density, the temporal variations of local wave growth rates calculated with the observed proton ring distributions, show a remarkable agreement with those of the observed wave amplitude. Therefore, the paper provides a direct proof that background plasma densities can modulate . . .
Date: 07/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074681 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL074681/full
More Details
Authors: Yuan Zhigang, Liu Kun, Yu Xiongdong, Yao Fei, Huang Shiyong, et al.
Title: Precipitation of radiation belt electrons by EMIC waves with conjugated observations of NOAA and Van Allen satellites
Abstract: In this letter, we present unique conjugated satellite observations of MeV relativistic electron precipitation caused by electromagnetic ion cyclotron (EMIC) waves. On the outer boundary of the plasmasphere, the Van Allen probe observed EMIC waves. At ionospheric altitudes, the NOAA 16 satellite at the footprint of Van Allen probe simultaneously detected obvious flux enhancements for precipitating >MeV radiation belt electrons, but not for precipitating MeV radiation belt electrons. Our result provides a direct magnetic conjugated observational link between in‐situ inner magnetospheric EMIC wav. . .
Date: 11/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL080481 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL080481
More Details
Authors: Yuan Zhigang, Ouyang Zhihai, Yu Xiongdong, Huang Shiyong, Yao Fei, et al.
Title: Global distribution of proton rings and associated magnetosonic wave instability in the inner magnetosphere
Abstract: Using the Van Allen Probe A observations, we obtained the global distribution of proton rings and calculated the linear wave growth rate of fast magnetosonic (MS) waves in the region L ~ 3‐6. Our statistical and calculated results demonstrate that MS waves can be locally excited on the dayside outside the plasmapause, as well as in the dusk sector inside the plasmapause. The frequency range of unstable MS waves is strongly modulated by the ratio of the proton ring velocity (Vr) to the local Alfvén speed (VA). High harmonic MS waves (ω>20ΩH+) can be excited outside the plasmapause where Vr/VA<1 while low harmonic MS waves (ω<10ΩH+) with frequencies less than ~30 Hz are found to be excited both outside and inside the plasmapause where 1Date: 09/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL079999 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL079999
More Details
Authors: Yuan Zhigang, Yu Xiongdong, Ouyang Zhihai, Yao Fei, Huang Shiyong, et al.
Title: Simultaneous trapping of EMIC and MS waves by background plasmas
Abstract: Electromagnetic ion cyclotron waves and fast magnetosonic waves are found to be simultaneously modulated by background plasma density: both kinds of waves were observed in high plasma density regions but vanished in low density regions. Theoretical analysis based on Snell's law and linear growth theory have been utilized to investigate the physical mechanisms driving such modulation. It is suggested that the modulation of fast magnetosonic waves might be due to trapping by plasma density structures, which results from a conservation of the parameter Q during their propagation. Here Q = nrsinψ, with n the refractive index, r the radial distance, and ψ the wave azimuthal angle. As for electromagnetic ion cyclotron waves, the modulation might be owed to the ion composition difference betwee. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026149 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026149
More Details
Authors: Yuan Zhigang, Yao Fei, Yu Xiongdong, Huang Shiyong, and Ouyang Zhihai
Title: An Automatic Detection Algorithm Applied to Fast Magnetosonic Waves With Observations of the Van Allen Probes
Abstract: Fast magnetosonic (MS) waves can play an important role in the evolution of the inner magnetosphere. However, there is still not an effective method to quantitatively identify such waves for observations of the Van Allen Probes reasonably. In this paper, we used Van Allen Probes data from 18 September 2012 to 30 September 2014 to find a more comprehensive automatic detection algorithm for fast MS waves through statistical analysis of the major properties, including the planarity, ellipticity, and wave normal angle of whole fluctuations using the singular value decomposition method. According to a control variate method, we find an obvious difference between fast MS waves and other waves in the statistical distribution of their major properties. After eliminating the influence of background. . .
Date: Apr-05-2021 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026387 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026387
More Details
Authors: Yu Yiqun, Koller Josef, Jordanova Vania K., Zaharia Sorin G., Friedel Reinhard W., et al.
Title: Application and testing of the L * neural network with the self-consistent magnetic field model of RAM-SCB
Abstract: We expanded our previous work on L* neural networks that used empirical magnetic field models as the underlying models by applying and extending our technique to drift shells calculated from a physics-based magnetic field model. While empirical magnetic field models represent an average, statistical magnetospheric state, the RAM-SCB model, a first-principles magnetically self-consistent code, computes magnetic fields based on fundamental equations of plasma physics. Unlike the previous L* neural networks that include McIlwain L and mirror point magnetic field as part of the inputs, the new L* neural network only requires solar wind conditions and the Dst index, allowing for an easier preparation of input parameters. This new neural network is compared against those previously trained netwo. . .
Date: 03/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 1683 - 1692 DOI: 10.1002/jgra.v119.310.1002/2013JA019350 Available at: http://doi.wiley.com/10.1002/jgra.v119.3http://doi.wiley.com/10.1002/2013JA019350
More Details
Authors: Yu J., Li L. Y., Cui J., Cao J. B., and Wang J.
Title: Effect of Low‐Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere
Abstract: In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly‐like electron pitch angle distributions and the emission of low‐harmonic (LH) fast magnetosonic (MS) waves inside the high‐density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly‐like distributions for both events (near‐equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low‐energy electrons (<~150 keV) show butterfly‐like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different‐energy electrons through the bounc. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026328 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026328
More Details
Authors: Yu Yiqun, ätter Lutz, Jordanova Vania K., Zheng Yihua, Engel Miles, et al.
Title: Initial Results From the GEM Challenge on the Spacecraft Surface Charging Environment
Abstract: Spacecraft surface charging during geomagnetically disturbed times is one of the most important causes of satellite anomalies. Predicting the surface charging environment is one prevalent task of the geospace environment models. Therefore, the Geospace Environment Modeling (GEM) Focus Group “Inner Magnetosphere Cross‐energy/Population Interactions” initiated a community‐wide challenge study to assess the capability of several inner magnetosphere ring current models in determining surface charging environment for the Van Allen Probes orbits during the 17 March 2013 storm event. The integrated electron flux between 10 and 50 keV is used as the metrics. Various skill scores are applied to quantitatively measure the modeling performance against observations. Results indicate that no mo. . .
Date: 02/2019 Publisher: Space Weather DOI: 10.1029/2018SW002031 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW002031
More Details
Authors: Yu Yiqun, Jordanova Vania, Welling Dan, Larsen Brian, Claudepierre Seth G., et al.
Title: The role of ring current particle injections: Global simulations and Van Allen Probes observations during 17 March 2013 storm
Abstract: We simulate substorm injections observed by the Van Allen Probes during the 17 March 2013 storm using a self-consistent coupling between the ring current model RAM-SCB and the global MHD model BATS-R-US. This is a significant advancement compared to previous studies that used artificially imposed electromagnetic field pulses to mimic substorm dipolarization and associated inductive electric field. Several substorm dipolarizations and injections are reproduced in the MHD model, in agreement with the timing of shape changes in the AE/AL index. The associated inductive electric field transports plasma sheet plasma to geostationary altitudes, providing the boundary plasma source to the ring current model. It is found that impulsive plasma sheet injections, together with a large-scale convectio. . .
Date: 02/2014 Publisher: Geophysical Research Letters Pages: 1126 - 1132 DOI: 10.1002/2014GL059322 Available at: http://doi.wiley.com/10.1002/2014GL059322
More Details
Authors: Yu Yiqun, Jordanova Vania, Zou Shasha, Heelis Roderick, Ruohoniemi Mike, et al.
Title: Modeling sub-auroral polarization streams (SAPS) during the March 17, 2013 storm
Abstract: The sub-auroral polarization streams (SAPS) are one of the most important features in representing magnetosphere-ionosphere coupling processes. In this study, we use a state-of-the-art modeling framework that couples an inner magnetospheric ring current model RAM-SCB with a global MHD model BATS-R-US and an ionospheric potential solver to study the SAPS that occurred during the March 17, 2013 storm event as well as to assess the modeling capability. Both ionospheric and magnetospheric signatures associated with SAPS are analyzed to understand the spatial and temporal evolution of the electrodynamics in the mid-latitude regions. Results show that the model captures the SAPS at sub-auroral latitudes, where Region-2 field-aligned currents (FACs) flow down to the ionosphere and the conductance. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020371 Available at: http://doi.wiley.com/10.1002/2014JA020371
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Wang Dedong, Li Haimeng, et al.
Title: EMIC waves covering wide L shells: MMS and Van Allen Probes observations
Abstract: During 04:45:00–08:15:00 UT on 13 September in 2015, a case of Electromagnetic ion cyclotron (EMIC) waves covering wide L shells (L = 3.6–9.4), observed by the Magnotospheric Multiscale 1 (MMS1) are reported. During the same time interval, EMIC waves observed by Van Allen Probes A (VAP-A) only occurred just outside the plasmapause. As the Van Allen Probes moved outside into a more tenuous plasma region, no intense waves were observed. Combined observations of MMS1 and VAP-A suggest that in the terrestrial magnetosphere, an appropriately dense background plasma would make contributions to the growth of EMIC waves in lower L shells, while the ion anisotropy, driven by magnetospheric compression, might play an important role in the excitation of EMIC waves in higher L shells. These EMIC w. . .
Date: 07/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA023982 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA023982/full
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Wang Dedong, Li Haimeng, Huang Shiyong, et al.
Title: In situ observations of EMIC waves in O + band by the Van Allen Probe A
Abstract: Through polarization and spectra analysis of the magnetic field observed by the Van Allen Probe A, we present two typical cases of O+ band EMIC waves in the outer plasmasphere or plasma trough. Although such O+ band EMIC waves are rarely observed, 18 different events of O+ band EMIC waves (16 events in the outer plasmasphere and 2 events in the plasma trough) are found from September 2012 to August 2014 with observations of the Van Allen Probe A. We find that the preferred region for the occurrence of O+ band EMIC waves is in L = 2-5 and MLT = 03-13, 19-20, which is in accordance with the occurrence region of O+ ion torus. Therefore, our result suggests that the O+ ion torus in the outer plasmasphere during geomagnetic activities should play an important role in the generation of EMIC wave. . .
Date: 02/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063250 Available at: http://doi.wiley.com/10.1002/2015GL063250
More Details
Authors: Yu Xiongdong, and Yuan Zhigang
Title: Saturation Characteristics of Parallel EMIC Waves in the Inner Magnetosphere
Abstract: In this letter, detailed evolution process of parallel electromagnetic ion cyclotron waves in the inner magnetosphere has been investigated through quasilinear theory. A new saturation has been found to occur after the usual first saturation. During the interval between these two saturations, the energy transfers from H+ band to He+ band electromagnetic ion cyclotron waves. Moreover, through a best fitting, we obtain new model parameters for the anisotropy‐beta inverse relation of hot H+, which identifies the threshold of ion cyclotron instabilities in the inner magnetosphere. In situ observations of the Van Allen Probe mission also verify these new model parameters. Therefore, our results reveal the evolution process and saturation characteristics of parallel electromagnetic ion cyclotr. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083630 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083630
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Yao Fei, Wang Dedong, et al.
Title: Excitation of O + Band EMIC Waves Through H + Ring Velocity Distributions: Van Allen Probe Observations
Abstract: A typical case of electromagnetic ion cyclotron (EMIC) emissions with both He+ band and O+ band waves was observed by Van Allen Probe A on 14 July 2014. These emissions occurred in the morning sector on the equator inside the plasmasphere, in which region O+ band EMIC waves prefer to appear. Through property analysis of these emissions, it is found that the He+ band EMIC waves are linearly polarized and propagating quasi-parallelly along the background magnetic field, while the O+ band ones are of linear and left-hand polarization and propagating obliquely with respect to the background magnetic field. Using the in situ observations of plasma environment and particle data, excitation of these O+ band EMIC waves has been investigated with the linear growth theory. The calculated linear grow. . .
Date: 02/2018 Publisher: Geophysical Research Letters Pages: 1271 - 1276 DOI: 10.1002/grl.v45.310.1002/2018GL077109 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2018GL077109/full
More Details
Authors: Yu J., Li L.Y., Cao J. B., Reeves G D, Baker D N, et al.
Title: The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons
Abstract: Using the Van Allen Probe in-situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (Bz-IMF < -2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (MLT ~ 06:00 - 18:00, and L > 4), the pitch angles of relativistic electrons are mainly pancake distributions with a flux peak around 90o (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distrib. . .
Date: 06/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL069029 Available at: http://doi.wiley.com/10.1002/2016GL069029
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Li Haimeng, Huang Shiyong, Wang Dedong, et al.
Title: Response of banded whistler-mode waves to the enhancement of solar wind dynamic pressure in the inner Earth's magnetosphere
Abstract: With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequency bands broadening could be locally excited by these hot electrons with increased anisotropy. The current study provides a great in situ evidence for the influence on frequencies of banded whistler waves by the enhancement of solar wind dynamic pressures, which reveals. . .
Date: Mar-08-2020 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078849 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL078849
More Details
Authors: Yu Yiqun, Jordanova Vania K., Ridley Aaron J., Albert Jay M, Horne Richard B, et al.
Title: A new ionospheric electron precipitation module coupled with RAM-SCB within the geospace general circulation model
Abstract: Electron precipitation down to the atmosphere due to wave-particle scattering in the magnetosphere contributes significantly to the auroral ionospheric conductivity. In order to obtain the auroral conductivity in global MHD models that are incapable of capturing kinetic physics in the magnetosphere, MHD parameters are often used to estimate electron precipitation flux for the conductivity calculation. Such an MHD approach, however, lacks self-consistency in representing the magnetosphere-ionosphere coupling processes. In this study we improve the coupling processes in global models with a more physical method. We calculate the physics-based electron precipitation from the ring current and map it to the ionospheric altitude for solving the ionospheric electrodynamics. In particular, we use . . .
Date: 09/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022585 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA022585/full
More Details
Authors: Yu Xiongdong, Yuan Zhigang, Huang Shiyong, Yao Fei, Qiao Zheng, et al.
Title: Excitation of extremely low-frequency chorus emissions: The role of background plasma density
Abstract: Low‐frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts. However, the mechanism (s) generating these low‐frequency chorus emissions have not been well understood. . In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f ce (typical ordinary chorus) to 0.02 f ce (extremely low‐frequency chorus). Those extremely low‐frequency chorus waves were observed in a rather dense plasma, where the number density N e was found to be several times larger than has been associated with observations of ordinary chorus waves. For suprathermal electrons whose free energy is supplied by anisotropi. . .
Date: 02/2019 Publisher: Earth and Planetary Physics Pages: 1 - 7 DOI: 10.26464/epp2019001 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.26464/epp2019001
More Details
Authors: Yu J., Li L.Y., Cao J. B., Yuan Z. G., Reeves G D, et al.
Title: Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement
Abstract: By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2MeV) outside the heart of outer radiation belt (L*≥ 5) undergo multiple losses during a storm sudden commencement (SSC). The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α< 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°-150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|< 0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-. . .
Date: 11/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021460 Available at: http://doi.wiley.com/10.1002/2015JA021460http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021460
More Details
Authors: Yu J., Li L. Y., Cao J. B., Chen L, Wang J., et al.
Title: Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models
Abstract: Based on the Van Allen Probe A observations from 1 October 2012 to 31 December 2014, we develop two empirical models to respectively describe the hiss wave normal angle (WNA) and amplitude variations in the Earth's plasmasphere for different substorm activities. The long-term observations indicate that the plasmaspheric hiss amplitudes on the dayside increase when substorm activity is enhanced (AE index increases), and the dayside hiss amplitudes are greater than the nightside. However, the propagation angles (WNAs) of hiss waves in most regions do not depend strongly on substorm activity, except for the intense substorm-induced increase in WNAs in the nightside low L-region. The propagation angles of plasmaspheric hiss increase with increasing magnetic latitude or decreasing radial distan. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023372 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023372/full
More Details
Authors: Yoon Peter H., Hwang Junga, Kim Hyangpyo, and Seough Jungjoon
Title: Quasi Thermal Noise Spectroscopy for Van Allen Probes
Abstract: Quasi thermal fluctuations in the Langmuir/upper‐hybrid frequency range are pervasively observed in space plasmas including the radiation belt and the ring current region of inner magnetosphere as well as the solar wind. The quasi thermal noise spectroscopy may be employed in order to determine the electron density and temperature as well as to diagnose the properties of energetic electrons when direct measurements are not available. However, when employing the technique, one must carefully take the spacecraft orientation into account. The present paper takes the upper‐hybrid and multiple harmonic—or (n + 1/2)fce—emissions measured by the Van Allen Probes as an example in order to illustrate how the spacecraft antenna geometrical factor can be incorporated into the theoretical . . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026460 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026460
More Details
Authors: Yetemen Omer, Istanbulluoglu Erkan, Flores-Cervantes Homero, Vivoni Enrique R., and Bras Rafael L.
Title: Ecohydrologic role of solar radiation on landscape evolution
Abstract: Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the rol. . .
Date: 02/2015 Publisher: Water Resources Research Pages: 1127 - 1157 DOI: 10.1002/wrcr.v51.210.1002/2014WR016169 Available at: http://doi.wiley.com/10.1002/2014WR016169
More Details
Authors: Yang Chang, Su Zhenpeng, Xiao Fuliang, Zheng Huinan, Wang Yuming, et al.
Title: A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region
Abstract: Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a three-year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct . . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL073116 Available at: http://doi.wiley.com/10.1002/2017GL073116
More Details
Authors: Yang Chang, Xiao Fuliang, He Yihua, Liu Si, Zhou Qinghua, et al.
Title: Storm-time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus
Abstract: During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3−6 and MLT=2 − 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 MeV) electrons during two intervals when Probe A passed the location L = 4.3 along its orbit. The simulating results show that chorus with combined quasi-parallel and oblique components can produce a more pronounced flux enhancement in the pitch angle range ∼45∘. . .
Date: 02/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL075894 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL075894/full
More Details
Authors: Yang Xiaochao, Ni Binbin, Yu Jiang, Zhang Yang, Zhang Xiaoxin, et al.
Title: Unusual refilling of the slot region between the Van Allen radiation belts from November 2004 to January 2005
Abstract: Using multisatellite measurements, a uniquely strong and long-lived relativistic electron slot region refilling event from November 2004 to January 2005 is investigated. This event occurred under remarkable interplanetary and magnetospheric conditions. Both empirically modeled and observationally estimated plasmapause locations demonstrate that the plasmasphere eroded significantly prior to the enhancement phase of this event. The estimated diffusion coefficients indicate that the radial diffusion due to ULF waves is insufficient to account for the observed enhancement of slot region electrons. However, the diffusion coefficients evaluated using the distribution of chorus wave intensities derived from low-altitude POES electron observations indicate that the local acceleration induced by c. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023204 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023204/full
More Details
Authors: Yang Xiao C., Zhu Guang W., Zhang Xiao X., Sun Yue Q., Liang Jin B., et al.
Title: An unusual long-lived relativistic electron enhancement event excited by sequential CMEs
Abstract: An unusual long-lived intense relativistic electron enhancement event from July to August 2004 is examined using data from Fengyun-1, POES, GOES, ACE, the Cluster Mission and geomagnetic indices. During the initial 6 days of this event, the observed fluxes in the outer zone enhanced continuously and their maximum increased from 2.1 × 102 cm-2·sr-1·s-1 to 3.5 × 104 cm-2·sr-1·s-1, the region of enhanced fluxes extended from L = 3.5-6.5 to L = 2.5-6.5, and the flux peak location shifted inward from L ~ 4.2 to L ~ 3.3. During the following 7 days, without any locational movement, the flux peak increased slowly and exceeded the pre-storm fluxes by about 4 orders of magnitude. Subsequently, the decay rate of relativistic electrons is so slow that the peak re. . .
Date: 10/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA019797 Available at: http://doi.wiley.com/10.1002/2014JA019797
More Details