Found 603 results
Filters: Keyword is Van Allen Probes  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Authors: Agapitov O. V., Mozer F. S., Artemyev A. V., Mourenas D., and Krasnoselskikh V. V.
Title: Wave-particle interactions in the outer radiation belts
Abstract: Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space, with the associated rapid (fraction of a bounce period) electron acceleration, to hundreds of keV by Landau resonance, in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed.
Date: 12/2015 Publisher: Advances in Astronomy and Space Physics Pages: 68-74 DOI: N/A Available at:
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Kasahara Y., and Krasnoselskikh V.
Title: Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves
Abstract: Global statistics of the amplitude distributions of hiss, lightning-generated, and other whistler mode waves from terrestrial VLF transmitters have been obtained from the EXOS-D (Akebono) satellite in the Earth's plasmasphere and fitted as functions of L and latitude for two geomagnetic activity ranges (Kp<3 and Kp>3). In particular, the present study focuses on the inner zone L∈[1.4,2] where reliable in situ measurements were lacking. Such statistics are critically needed for an accurate assessment of the role and relative dominance of each type of wave in the dynamics of the inner radiation belt. While VLF waves seem to propagate mainly in a ducted mode at L∼1.5–3 for Kp<3, they appear to be substantially unducted during more disturbed periods (Kp>3). Hiss waves are generally the m. . .
Date: 04/2014 Publisher: Journal of Geophysical Research: Space Physics Pages: 2876 - 2893 DOI: 10.1002/jgra.v119.410.1002/2014JA019886 Available at:
More Details
Authors: Agapitov O. V., Mourenas D., Artemyev A. V., Mozer F S, Hospodarsky G., et al.
Title: Synthetic empirical chorus wave model from combined Van Allen Probes and Cluster statistics
Abstract: Chorus waves are among the most important natural electromagnetic emissions in the magnetosphere as regards their potential effects on electron dynamics. They can efficiently accelerate or precipitate electrons trapped in the outer radiation belt, producing either fast increases of relativistic particle fluxes, or auroras at high latitudes. Accurately modeling their effects, however, requires detailed models of their wave power and obliquity distribution as a function of geomagnetic activity in a particularly wide spatial domain, rarely available based solely on the statistics obtained from only one satellite mission. Here, we seize the opportunity of synthesizing data from the Van Allen Probes and Cluster spacecraft to provide a new comprehensive chorus wave model in the outer radiation b. . .
Date: 12/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024843 Available at:
More Details
Authors: Agapitov O., Blum L. W., Mozer F S, Bonnell J. W., and Wygant J
Title: Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The key parameters for both nonlinear and quasi-linear treatment of wave-particle interactions are the temporal and spatial scales of the wave source region and coherence of the wave field perturbations. Neither the source scale nor the coherence scale is well established experimentally, mostly because of a lack of multipoint VLF waveform measurements. We present an unprecedentedly long interval of coordinated VLF waveform measurements (sampled at 16384 s−1) aboard the two Van Allen Probes spacecraft—9 h (0800–1200 UT and 1700–2200 UT) during two consecutive apogees on 15 July . . .
Date: 03/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL072701 Available at:
More Details
Authors: Agapitov O. V., Krasnoselskikh V., Mozer F S, Artemyev A. V., and Volokitin A. S.
Title: Generation of nonlinear Electric Field Bursts in the outer radiation belt through the parametric decay of whistler waves
Abstract: Huge numbers of different non-linear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on the Van Allen Probes. Some of them are associated with whistler waves. Such TDS often emerge on the forward edges of the whistler wave packets and form chains. The parametric decay of a whistler wave into a whistler wave propagating in the opposite direction and an electron acoustic wave is studied experimentally as well as analytically, using Van Allen Probes data. The resulting electron acoustic wave is considered to be the source of electron scale TDS. The measured parameters of the three waves (two whistlers and the electron acoustic wave) are in a good agreement with an assumption . . .
Date: 05/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL064145 Available at:
More Details
Authors: Agapitov O., Drake J. F., Vasko I., Mozer F S, Artemyev A., et al.
Title: Nonlinear Electrostatic Steepening of Whistler Waves: The Guiding Factors and Dynamics in Inhomogeneous Systems
Abstract: Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave‐particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high‐amplitude whistlers suggest the importance of nonlinear wave‐particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant power in the higher harmonics) waveforms of the parallel electric field, pres. . .
Date: 03/2018 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL076957 Available at:
More Details
Authors: Agapitov O. V., Artemyev A. V., Mourenas D., Mozer F S, and Krasnoselskikh V.
Title: Nonlinear local parallel acceleration of electrons through Landau trapping by oblique whistler mode waves in the outer radiation belt
Abstract: Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ∼1–10 keV electrons and their acceleration up to 100–300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We de. . .
Date: 12/2015 Publisher: Geophysical Research Letters Pages: 10,140 - 10,149 DOI: 10.1002/2015GL066887 Available at:
More Details
Authors: áhlava J., ěmec F., ík O., šová I., Hospodarskyy G. B., et al.
Title: Longitudinal dependence of whistler mode electromagnetic waves in the Earth's inner magnetosphere
Abstract: We use the measurements performed by the DEMETER (2004‐2010) and the Van Allen Probes (2012‐2016, still operating) spacecraft to investigate the longitudinal dependence of the intensity of whistler mode waves in the Earth's inner magnetosphere. We show that a significant longitudinal dependence is observed inside the plasmasphere on the nightside, primarily in the frequency range 400 Hz–2 kHz. On the other hand, almost no longitudinal dependence is observed on the dayside. The obtained results are compared to the lightning occurrence rate provided by the OTD/LIS mission normalized by a factor accounting for the ionospheric attenuation. The agreement between the two dependencies indicates that lightning generated electromagnetic waves may be responsible for the observed effect, thus s. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025284 Available at:
More Details
Authors: Ali Ashar F., Malaspina David M., Elkington Scot R, Jaynes Allison N., Chan Anthony A, et al.
Title: Electric and Magnetic Radial Diffusion Coefficients Using the Van Allen Probes Data
Abstract: ULF waves are a common occurrence in the inner magnetosphere and they contribute to particle motion, significantly, at times. We used the magnetic and the electric field data from the EMFISIS and the EFW instruments on board the Van Allen Probes to estimate the ULF wave power in the compressional component of the magnetic field and the azimuthal component of the electric field, respectively. Using L∗, Kp, and MLT as parameters, we conclude that the noon sector contains higher ULF Pc-5 wave power compared with the other MLT sectors. The dawn, dusk, and midnight sectors have no statistically significant difference between them. The drift-averaged power spectral densities are used to derive the magnetic and the electric component of the radial diffusion coefficient. Both components exhibit . . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023002 Available at:
More Details
Authors: Allen R. C., Livi S. A., Vines S. K., Goldstein J, Cohen I., et al.
Title: Storm time empirical model of O + and O 6+ distributions in the magnetosphere
Abstract: Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-order Fourier expansion model based empirically on a superposed epoch analysis of geomagnetic storms observed by Polar is presented in this study to provide insight into the evolution of both ionospheric-originating and solar wind-originating plasma throughout geomagnetic . . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024245 Available at:
More Details
Authors: Allison Hayley J., Horne Richard B, Glauert Sarah A, and Del Zanna Giulio
Title: Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit
Abstract: Variations in the high‐energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower‐energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low‐altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90°. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given . . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025786 Available at:
More Details
Authors: Anderson B. R., Shekhar S., Millan R M, Crew A. B., Spence H E, et al.
Title: Spatial Scale and Duration of One Microburst Region on 13 August 2015
Abstract: Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electron measurements to determine the spatial and temporal evolution of a microburst region in the morning MLT sector on 13 August 2015. The microburst region is found to extend across at least four hours in local time in the morning sector, from 09:00 to 13:00 MLT, and from. . .
Date: 04/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023752 Available at:
More Details
Authors: Andreeva V. A., and Tsyganenko N A
Title: Empirical modeling of the quiet and storm-time geosynchronous magnetic field
Abstract: A dynamical empirical model of the near-geosynchronous magnetic field has been constructed, based on a recently developed RBF approach and a multi-year set of spacecraft data taken by THEMIS, Polar, Cluster, and Van Allen Probes missions including 133 geomagnetic storms in the time interval between 1996 and 2016. The model describes the field as a function of Cartesian solar-magnetic coordinates, dipole tilt angle, solar wind ram pressure, and of a set of dynamic variables representing the response of the magnetosphere to the external driving/loading during the active phase of a space weather event, followed by the internal relaxation/dissipation during the storm recovery. In terms of the disturbance level, the model's validity range extends to intense storms with peak Sym-H values down to. . .
Date: 12/2017 Publisher: Space Weather DOI: 10.1002/2017SW001684 Available at:
More Details
Authors: Andreeva Varvara A., and Tsyganenko Nikolai A.
Title: Reconstructing the magnetosphere from data using radial basis functions
Abstract: A new method is proposed to derive from data magnetospheric magnetic field configurations without any a priori assumptions on the geometry of electric currents. The approach utilizes large sets of archived satellite data and uses an advanced technique to represent the field as a sum of toroidal and poloidal parts, whose generating potentials Ψ1 and Ψ2 are expanded into series of radial basis functions (RBF) with their nodes regularly distributed over the 3D modeling domain. The method was tested by reconstructing the inner and high-latitude field within geocentric distances up to 12RE on the basis of magnetometer data of Geotail, Polar, Cluster, THEMIS, and Van Allen space probes, taken during 1995–2015. Four characteristic states of the magnetosphere before and during a disturbance ha. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA022242 Available at:
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F S, and Spence H.
Title: Butterfly pitch-angle distribution of relativistic electrons in the outer radiation belt: Evidence of nonadiabatic scattering
Abstract: In this paper we investigate the scattering of relativistic electrons in the night-side outer radiation belt (around the geostationary orbit). We consider the particular case of low geomagnetic activity (|Dst|< 20 nT), quiet conditions in the solar wind, and absence of whistler wave emissions. For such conditions we find several events of Van-Allen probe observations of butterfly pitch-angle distributions of relativistic electrons (energies about 1-3 MeV). Many previous publications have described such pitch-angle distributions over a wide energy range as due to the combined effect of outward radial diffusion and magnetopause shadowing. In this paper we discuss another mechanism that produces butterfly distributions over a limited range of electron energies. We suggest that such distributi. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020865 Available at:
More Details
Authors: Artemyev A. V., Zhang X.-J., Angelopoulos V, Runov A., Spence H E, et al.
Title: Plasma anisotropies and currents in the near-Earth plasma sheet and inner magnetosphere
Abstract: The region occupying radial distances of ∼3 − 9 Earth radii (RE) in the night side, includes the near‐Earth plasma sheet with stretched magnetic field lines and the inner magnetosphere with strong dipolar magnetic field. In this region, the plasma flow energy, which was injected into the inner magnetosphere from the magnetotail, is converted to particle heating and electromagnetic wave generation. These important processes are controlled by plasma anisotropies, which are the focus of this study. Using measurements of THEMIS and Van Allen Probes in this transition region we obtain radial profiles of ion and electron temperatures and anisotropies for various geomagnetic activity levels. Ion and electron anisotropies vary with the geomagnetic activity in opposite directions. Paralle. . .
Date: 06/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025232 Available at:
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Blum L.
Title: Transverse eV ion heating by random electric field fluctuations in the plasmasphere
Abstract: Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2–3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse. . .
Date: 02/2017 Publisher: Physics of Plasmas DOI: 10.1063/1.4976713 Available at:
More Details
Authors: Artemyev A. V., Agapitov O. V., Mozer F, and Krasnoselskikh V.
Title: Thermal electron acceleration by localized bursts of electric field in the radiation belts
Abstract: In this paper we investigate the resonant interaction of thermal ~10−100 eV electrons with a burst of electrostatic field that results in electron acceleration to kilovolt energies. This single burst contains a large parallel electric field of one sign and a much smaller, longer lasting parallel field of the opposite sign. The Van Allen Probe spacecraft often observes clusters of spatially localized bursts in the Earth's outer radiation belts. These structures propagate mostly away from thegeomagnetic equator and share properties of soliton-like nonlinear electron-acoustic waves: a velocity of propagation is about the thermal velocity of cold electrons (~3000−10000 km/s), and a spatial scale of electric field localization alongthe field lines is about the Debye radius of hot electrons . . .
Date: 08/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL061248 Available at:
More Details
Authors: Artemyev Anton, Agapitov Oleksiy, Mourenas Didier, Krasnoselskikh Vladimir, Shastun Vital, et al.
Title: Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
Abstract: In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth’s inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of obliq. . .
Date: 04/2016 Publisher: Space Science Reviews Pages: 261 - 355 DOI: 10.1007/s11214-016-0252-5 Available at:
More Details
Authors: Artemyev A. V., Mourenas D., Agapitov O. V., and Krasnoselskikh V. V.
Title: Relativistic electron scattering by magnetosonic waves: Effects of discrete wave emission and high wave amplitudes
Abstract: In this paper, we study relativistic electron scattering by fast magnetosonic waves. We compare results of test particle simulations and the quasi-linear theory for different spectra of waves to investigate how a fine structure of the wave emission can influence electron resonant scattering. We show that for a realistically wide distribution of wave normal angles theta (i.e., when the dispersion delta theta >= 0.5 degrees), relativistic electron scattering is similar for a wide wave spectrum and for a spectrum consisting in well-separated ion cyclotron harmonics. Comparisons of test particle simulations with quasi-linear theory show that for delta theta > 0.5 degrees, the quasi-linear approximation describes resonant scattering correctly for a large enough plasma frequency. For a very narr. . .
Date: 06/2015 Publisher: Physics of Plasmas Pages: 062901 DOI: 10.1063/1.4922061 Available at:
More Details
Authors: Aryan Homayon, Sibeck David, Balikhin Michael, Agapitov Oleksiy, and Kletzing Craig
Title: Observation of chorus waves by the Van Allen Probes: Dependence on solar wind parameters and scale size
Abstract: Highly energetic electrons in the Earth's Van Allen radiation belts can cause serious damage to spacecraft electronic systems and affect the atmospheric composition if they precipitate into the upper atmosphere. Whistler mode chorus waves have attracted significant attention in recent decades for their crucial role in the acceleration and loss of energetic electrons that ultimately change the dynamics of the radiation belts. The distribution of these waves in the inner magnetosphere is commonly presented as a function of geomagnetic activity. However, geomagnetic indices are nonspecific parameters that are compiled from imperfectly covered ground based measurements. The present study uses wave data from the two Van Allen Probes to present the distribution of lower band chorus waves not onl. . .
Date: 08/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: 7608 - 7621 DOI: 10.1002/jgra.v121.810.1002/2016JA022775 Available at:
More Details
Authors: Aryan Homayon, Sibeck David G., Bin Kang Suk-, Balikhin Michael A., Fok Mei-Ching, et al.
Title: CIMI simulations with newly developed multi-parameter chorus and plasmaspheric hiss wave models
Abstract: Numerical simulation studies of the Earth's radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of chorus and plasmaspheric hiss amplitudes. However, currently these wave distribution models are based only on a single parameter, geomagnetic index (AE), and could potentially underestimate the wave amplitudes. Here we incorporate recently developed multi-parameter chorus and plasmas. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024159 Available at:
More Details
Authors: Aseev N.A., and Shprits Y.Y.
Title: Reanalysis of ring current electron phase space densities using Van Allen Probe observations, convection model, and log‐normal Kalman filter
Abstract: Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics‐based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log‐transformed convection model of ring current electrons and Van Allen Probe data. We consider long‐term dynamics of μ = 2.3 MeV/G and K = 0.3 G1/2RE electrons from 1 February 2013 to 16 June 2013. By using synthetic data, we show that the Kalman filter is capable of correcting erro. . .
Date: 04/2019 Publisher: Space Weather DOI: 10.1029/2018SW002110 Available at:
More Details
Authors: Aseev N. A., Shprits Y Y, Drozdov A. Y., Kellerman A. C., Usanova M. E., et al.
Title: Signatures of Ultrarelativistic Electron Loss in the Heart of the Outer Radiation Belt Measured by Van Allen Probes
Abstract: Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth's outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from Van Allen Probe particle data as a function of time and three adiabatic invariants between 9 October and 29 November 2012. New local minimums in the profiles are accompanied by the narrowing of normalized pitch angle distributions and ground-based detection of EMIC waves. Such a cor. . .
Date: 09/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024485 Available at:
More Details
Authors: Baker D N, Hoxie V C, Jaynes A., Kale A., Kanekal S G, et al.
Title: James Van Allen and His Namesake NASA Mission
Abstract: In many ways, James A. Van Allen defined and “invented” modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities.
Date: 12/2013 Publisher: Eos, Transactions American Geophysical Union Pages: 469 - 470 DOI: 10.1002/eost.v94.4910.1002/2013EO490001 Available at:
More Details
Authors: Baker Daniel
Title: New Twists in Earth’s Radiation Belts
Abstract: In 1958, an early satellite, Explorer I, made the discovery that Earth is enshrouded in belts of extraordinarily high-energy, high-intensity radiation. Now called the Van Allen belts, after the researcher who led that satellite mission, these rings are known to wax and wane in intensity, for reasons that are still being investigated. Satellites now criss-cross these belts, so understanding what influences them has dire implications for communications and other technologies in our modern age. Solar storms and space weather can pump them up, making the radiation zones around Earth immensely more dangerous for days or even weeks on end. The author has been involved with instruments on the dual Radiation Belt Storm Probes satellites that were launched on August 30, 2012, into Earth orbit to st. . .
Date: 09/2014 Publisher: American Scientist Pages: 374 DOI: 10.1511/2014.110.374 Available at:
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Batiste S, Bolton M, et al.
Title: The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth’s Radiation Belt High-Energy Particle Populations
Abstract: Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ∼20 MeV) with exc. . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 337-381 DOI: 10.1007/s11214-012-9950-9 Available at:
More Details
Authors: Baker D N, Jaynes A. N., Turner D. L., Nakamura R, Schmid D., et al.
Title: A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection
Abstract: An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnetosphere progressed through a sequence of energy-loading and stress-developing states until the entire system suddenly reconfigured at 19:32 UT. Energetic electrons, plasma, and magnetic fields measured by the four MMS spacecraft revealed clear dipolarization front. . .
Date: 06/2016 Publisher: Geophysical Research Letters Pages: 6051 - 6059 DOI: 10.1002/grl.v43.1210.1002/2016GL069643 Available at:
More Details
Authors: Baker D N, Jaynes A. N., Hoxie V C, Thorne R M, Foster J. C., et al.
Title: An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts
Abstract: Early observations1, 2 indicated that the Earth’s Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep ‘slot’ region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the outer boundary of which is called the plasmapause. The two-belt radiation structure was explained as arising from strong electron interactions with plasmaspheric hiss just inside the plasmapause boundary5, with the inner edge of the outer radiation zone corresponding to the minimum plasmapause location6. Re. . .
Date: 11/2014 Publisher: Nature Pages: 531 - 534 DOI: 10.1038/nature13956 Available at:
More Details
Authors: Baker D N, Jaynes A. N., Li X, Henderson M G, Kanekal S G, et al.
Title: Gradual diffusion and punctuated phase space density enhancements of highly relativistic electrons: Van Allen Probes observations
Abstract: The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L ~4.0 ± 0.5). Thi. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1351 - 1358 DOI: 10.1002/2013GL058942 Available at:
More Details
Authors: Baker D N, Kanekal S G, Hoxie V C, Henderson M G, Li X, et al.
Title: A Long-Lived Relativistic Electron Storage Ring Embedded in Earth's Outer Van Allen Belt
Abstract: Since their discovery more than 50 years ago, Earth’s Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly protons), the latter being stable in intensity levels over years to decades. In situ energy-specific and temporally resolved spacecraft observations reveal an isolated third ring, or torus, of high-energy (>2 MeV) electrons that formed on 2 September 2012 and persisted largely unc. . .
Date: 04/2013 Publisher: Science Pages: 186-190 DOI: 10.1126/science.1233518 Available at:
More Details
Authors: Berman Simmie, Cheng Weilun, Borowski Heather, and Persons David
Title: Spin stabilization design and testing of the Van Allen Probes
Abstract: This paper describes the design decisions taken and the mass properties tracking and testing flow chosen for the Van Allen Probes spacecraft and their deployable systems to achieve the coning angle requirements. Topics include a list of major requirements, a brief description of the error budget, a description of the tracking process of the spacecraft mass properties prior to test, a description of the spin balance and mass properties testing of the spacecraft core and deployable systems, and a presentation of the final mass properties and coning angle calculations of the fully deployed observatories. Launched August 30, 2012, the observed on-orbit, fully deployed configuration coning angles met the requirements, validating the spin balance and mass properties tracking, testing, and calcul. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836234 Available at:
More Details
Authors: Betz Eric O.
Title: Trapping waves in Earth's plasmasphere
Abstract: Earth's magnetic field traps donut-shaped bands of radiation in a belt around the planet that react to solar eruptions by growing and shrinking. The Van Allen belts consist of two rings filled with particles from the solar wind and cosmic rays. Within the outer ring of the Van Allen belt sits the plasmasphere, which is the innermost part of the planet's magnetic field and home to low-energy charged particles.
Date: 12/2014 Publisher: Eos, Transactions American Geophysical Union Pages: 472 - 472 DOI: 10.1002/2014EO490016 Available at:
More Details
Authors: Bin Kang Suk-, Fok Mei-Ching, Komar Colin, Glocer Alex, Li Wen, et al.
Title: An energetic electron flux dropout due to magnetopause shadowing on 1 June 2013
Abstract: We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May – 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift loss all result in butterfly electron pitch-angle distributions (PADs) at the nightside. During storm sudden commencement, RBSP observations display electron butterfly PADs over a wide range of energies. However, it is difficult to determine whether there are butterfly PADs duri. . .
Date: 01/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024879 Available at:
More Details
Authors: Bingham S. T., Mouikis C. G., Kistler L. M., Boyd A. J., Paulson K., et al.
Title: The outer radiation belt response to the storm time development of seed electrons and chorus wave activity during CME and CIR storms
Abstract: Gyroresonant wave‐particle interactions with very low frequency whistler mode chorus waves can accelerate subrelativistic seed electrons (hundreds of keV) to relativistic energies in the outer radiation belt during geomagnetic storms. In this study, we conduct a superposed epoch analysis of the chorus wave activity, the seed electron development, and the outer radiation belt electron response between L* = 2.5 and 5.5, for 25 coronal mass ejection and 35 corotating interaction region storms using Van Allen Probes observations. Electron data from the Magnetic Electron Ion Spectrometer and Relativistic Electron Proton Telescope instruments are used to monitor the storm‐phase development of the seed and relativistic electrons, and magnetic field measurements from the Electric and Magnetic . . .
Date: 12/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025963 Available at:
More Details
Authors: Blake J B, Carranza P A, Claudepierre S G, Clemmons J H, Crain W R, et al.
Title: The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
Abstract: This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. . . .
Date: 11/2013 Publisher: Space Science Reviews Pages: 383-421 DOI: 10.1007/s11214-013-9991-8
More Details
Authors: Blum L. W., Halford A., Millan R., Bonnell J. W., Goldstein J, et al.
Title: Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013
Abstract: Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the duskside of the magnetosphere at the end of 18 January and again late on 19 January, concurrent with particle injections, substorm activity, and enhanced magnetospheric convection. The structure, timing, and spatial extent of the waves are compared to those of the precipitation during both days to det. . .
Date: 07/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065245 Available at:
More Details
Authors: Blum L. W., Bonnell J. W., Agapitov O., Paulson K., and Kletzing C.
Title: EMIC wave scale size in the inner magnetosphere: Observations from the dual Van Allen Probes
Abstract: Estimating the spatial scales of electromagnetic ion cyclotron (EMIC) waves is critical for quantifying their overall scattering efficiency and effects on thermal plasma, ring current, and radiation belt particles. Using measurements from the dual Van Allen Probes in 2013–2014, we characterize the spatial and temporal extents of regions of EMIC wave activity and how these depend on local time and radial distance within the inner magnetosphere. Observations are categorized into three types—waves observed by only one spacecraft, waves measured by both spacecraft simultaneously, and waves observed by both spacecraft with some time lag. Analysis reveals that dayside (and H+ band) EMIC waves more frequently span larger spatial areas, while nightside (and He+ band) waves are more often loc. . .
Date: 02/2017 Publisher: Geophysical Research Letters Pages: 1227 - 1233 DOI: 10.1002/2016GL072316 Available at:
More Details
Authors: Blum L. W., Schiller Q., Li X, Millan R., Halford A., et al.
Title: New conjunctive CubeSat and balloon measurements to quantify rapid energetic electron precipitation
Abstract: Relativistic electron precipitation into the atmosphere can contribute significant losses to the outer radiation belt. In particular, rapid narrow precipitation features termed precipitation bands have been hypothesized to be an integral contributor to relativistic electron precipitation loss, but quantification of their net effect is still needed. Here we investigate precipitation bands as measured at low earth orbit by the Colorado Student Space Weather Experiment (CSSWE) CubeSat. Two precipitation bands of MeV electrons were observed on 18–19 January 2013, concurrent with precipitation seen by the 2013 Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign. The newly available conjugate measurements allow for a detailed estimate of the temporal and spatial fea. . .
Date: 11/2013 Publisher: Geophysical Research Letters Pages: 5833 - 5837 DOI: 10.1002/2013GL058546 Available at:
More Details
Authors: Blum L. W., Agapitov O., Bonnell J. W., Kletzing C., and Wygant J
Title: EMIC wave spatial and coherence scales as determined from multipoint Van Allen Probe measurements
Abstract: Electromagnetic ion cyclotron (EMIC) waves can provide a strong source of energetic electron pitch angle scattering. These waves are often quite localized, thus their spatial extent can have a large effect on their overall scattering efficiency. Using measurements from the dual Van Allen Probes, we examine four EMIC wave events observed simultaneously on the two probes at varying spacecraft separations. Correlation of both the wave amplitude and phase observed at both spacecraft is examined to estimate the active region and coherence scales of the waves. We find well-correlated wave amplitude and amplitude modulation across distances spanning hundreds to thousands of kilometers. Phase coherence persisting 30–60 s is observable during close conjunction events but is lost as spacecraft s. . .
Date: 05/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL068799 Available at:
More Details
Authors: Boardsen S. A., Hospodarsky G B, Kletzing C A, Pfaff R. F., Kurth W S, et al.
Title: Van Allen Probe Observations of Periodic Rising Frequencies of the Fast Magnetosonic Mode
Abstract: Near simultaneous periodic dispersive features of fast magnetosonic mode emissions are observed by both Van Allen Probes spacecraft while separated in magnetic local time by ~5 hours: Probe A at 15 and Probe B at 9–11 hours. Both spacecraft see similar frequency features, characterized by a periodic repetition at ~180 s. Each repetition is characterized by a rising frequency. Since no modulation is observed in the proton shell distribution, the plasma density, or in the background magnetic field at either spacecraft we conclude that these waves are not generated near the spacecraft but external to both spacecraft locations. Probe A while outside the plasmapause sees the start of each repetition ~40 s before probe B while deep inside the plasmasphere. We can qualitatively reproduce . . .
Date: 12/2014 Publisher: Geophysical Research Letters DOI: 10.1002/2014GL062020 Available at:
More Details
Authors: Boardsen Scott A, Hospodarsky George B, Kletzing Craig, Engebretson Mark, Pfaff Robert F, et al.
Title: Survey of the Frequency Dependent Latitudinal Distribution of the Fast Magnetosonic Wave Mode from Van Allen Probes EMFISIS Wave Form Receiver Plasma Wave Analysis
Abstract: We present a statistical survey of the latitudinal structure of the fast magnetosonic wave mode detected by the Van Allen Probes spanning the time interval of 9/21/2012 to 8/1/2014. We show that statistically the latitudinal occurrence of the wave frequency (f) normalized by the local proton cyclotron frequency (fcP) has a distinct funnel shaped appearance in latitude about the magnetic equator similar to that found in case studies. By comparing the observed E/B ratios with the model E/B ratio, using the observed plasma density and background magnetic field magnitude as input to the model E/B ratio, we show that this mode is consistent with the extraordinary (whistler) mode at wave normal angles (θk) near 90°. Performing polarization analysis on synthetic waveforms composed from a superp. . .
Date: 02/2016 Publisher: Journal of Geophysical Research: Space Physics Pages: n/a - n/a DOI: 10.1002/2015JA021844 Available at:
More Details
Authors: Boardsen Scott A., Hospodarsky George B., Min Kyungguk, Averkamp Terrance F., Bounds Scott R., et al.
Title: Determining the wave vector direction of equatorial fast magnetosonic waves
Abstract: We perform polarization analysis of the equatorial fast magnetosonic waves electric field over a 20 minute interval of Van Allen Probes A Waveform Receiver burst mode data. The wave power peaks at harmonics of the proton cyclotron frequency indicating the spacecraft is near or in the source region. The wave vector is inferred from the direction of the major axis of the electric field polarization ellipsoid and the sign of the phase between the longitudinal electric and compressional magnetic field components. We show that wave vector is preferentially in the azimuthal direction as opposed to the radial direction. From Poynting flux analysis one would infer that the wave vector is primarily in the radial direction. We show that the error in the Poynting flux is large ~ 90°. These results s. . .
Date: 07/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL078695 Available at:
More Details
Authors: Boyd A.J., Spence H.E., Huang C.-L., Reeves G D, Baker D N, et al.
Title: Statistical Properties of the Radiation Belt Seed Population
Abstract: We present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular we investigate the relationship between the 10s-100s keV seed electrons and >1 MeV core radiation belt electron population. Using a cross correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈ 0.73 with a time lag of 10-15 hours. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of the acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of 100s of keV electron. . .
Date: 07/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA022652 Available at:
More Details
Authors: Boyd A. J., Spence H E, Claudepierre S G, Fennell J. F., Blake J B, et al.
Title: Quantifying the radiation belt seed population in the 17 March 2013 electron acceleration event
Abstract: We present phase space density (PSD) observations using data from the Magnetic Electron Ion Spectrometer instrument on the Van Allen Probes for the 17 March 2013 electron acceleration event. We confirm previous results and quantify how PSD gradients depend on the first adiabatic invariant. We find a systematic difference between the lower-energy electrons (1 MeV with a source region within the radiation belts. Our observations show that the source process begins with enhancements to the 10s–100s keV energy seed population, followed by enhancements to the >1 MeV population and eventually leading to enhancements in the multi-MeV electron population. These observations provide the clearest evidence to date . . .
Date: 04/2014 Publisher: Geophysical Research Letters Pages: 2275 - 2281 DOI: 10.1002/2014GL059626 Available at:
More Details
Authors: Boyd A.J., Turner D.L., Reeves G.D., Spence H.E., Baker D.N., et al.
Title: What Causes Radiation Belt Enhancements: A Survey of the Van Allen Probes Era
Abstract: We survey radiation belt enhancement events during the Van Allen Probes era to determine what mechanism is the dominant cause of enhancements and where it is most effective. Two primary mechanisms have been proposed: (1) betatron/Fermi acceleration due to the Earthward radial transport of electrons which produces monotonic gradients in phase space density (PSD) and (2) “local acceleration" due to gyro/Landau resonant interaction with electromagnetic waves which produces radially localized, growing peaks in PSD. To differentiate between these processes, we examine radial profiles of PSD in adiabatic coordinates using data from the Van Allen Probes and THEMIS satellites for 80 outer belt enhancement events from October 2012‐April 2017 This study shows that local acceleration is the domin. . .
Date: 05/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077699 Available at:
More Details
Authors: Breneman A. W., Halford A., Millan R., McCarthy M., Fennell J, et al.
Title: Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss
Abstract: Over 40 years ago it was suggested that electron loss in the region of the radiation belts that overlaps with the region of high plasma density called the plasmasphere, within four to five Earth radii1, 2, arises largely from interaction with an electromagnetic plasma wave called plasmaspheric hiss3, 4, 5. This interaction strongly influences the evolution of the radiation belts during a geomagnetic storm, and over the course of many hours to days helps to return the radiation-belt structure to its ‘quiet’ pre-storm configuration. Observations have shown that the long-term electron-loss rate is consistent with this theory but the temporal and spatial dynamics of the loss process remain to be directly verified. Here we report simultaneous measurements of structured radiation-belt electr. . .
Date: 06/2015 Publisher: Nature Pages: 193 - 195 DOI: 10.1038/nature14515 Available at:
More Details
Authors: Breneman A. W., Crew A., Sample J., Klumpar D., Johnson A., et al.
Title: Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II
Abstract: We present observations that provide the strongest evidence yet that discrete whistler mode chorus packets cause relativistic electron microbursts. On 20 January 2016 near 1944 UT the low Earth orbiting CubeSat Focused Investigations of Relativistic Electron Bursts: Intensity, Range, and Dynamics (FIREBIRD II) observed energetic microbursts (near L = 5.6 and MLT = 10.5) from its lower limit of 220 keV, to 1 MeV. In the outer radiation belt and magnetically conjugate, Van Allen Probe A observed rising‐tone, lower band chorus waves with durations and cadences similar to the microbursts. No other waves were observed. This is the first time that chorus and microbursts have been simultaneously observed with a separation smaller than a chorus packet. A majority of the microbursts do not have t. . .
Date: 11/2017 Publisher: Geophysical Research Letters Pages: 11,265 - 11,272 DOI: 10.1002/2017GL075001 Available at:
More Details
Authors: Brito Thiago V., and Morley Steven K.
Title: Improving empirical magnetic field models by fitting to in situ data using an optimized parameter approach
Abstract: A method for comparing and optimizing the accuracy of empirical magnetic field models using in situ magnetic field measurements is presented. The optimization method minimizes a cost function - τ - that explicitly includes both a magnitude and an angular term. A time span of 21 days, including periods of mild and intense geomagnetic activity, was used for this analysis. A comparison between five magnetic field models (T96, T01S, T02, TS04, TS07) widely used by the community demonstrated that the T02 model was, on average, the most accurate when driven by the standard model input parameters. The optimization procedure, performed in all models except TS07, generally improved the results when compared to unoptimized versions of the models. Additionally, using more satellites in the optimizat. . .
Date: 10/2017 Publisher: Space Weather DOI: 10.1002/2017SW001702 Available at:
More Details
Authors: Burke W. J., Erickson P. J., Yang J., Foster J., Wygant J, et al.
Title: O + Ion Conic and Plasma Sheet Dynamics Observed by Van Allen Probe Satellites during the 1 June 2013 Magnetic Storm
Abstract: The Van Allen Probe satellites were near apogee in the late evening local time sector during the 1 June 2013 magnetic storm's main phase. About an hour after crossing the ring current's “nose structure” into the plasma sheet, the satellites encountered a quasi-periodic sequence of 0.08 - 3 keV O+ ions. Pitch angle distributions of this population consistently peaked nearly anti-parallel to the local magnetic field. We interpret this population as O+ conics originating in the northern ionosphere. Sequences began as fairly steady state conic fluxes with energies in the ~ 80 to 100 eV range. Over about a half hour build-up phase, O+ energies peaked near 1 keV. During subsequent release phases lasting ~ 20 minutes, O+ energies returned to low-energy starting points. We argu. . .
Date: 05/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021795 Available at:
More Details