Biblio

Found 131 results
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Authors: Lyubchich A. A., Demekhov A. G., Titova E. E., and Yahnin A. G.
Title: Amplitude–frequency characteristics of ion–cyclotron and whistler-mode waves from Van Allen Probes data
Abstract: Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion–cyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently large, and the frequency ranges corresponding to the enhancement peak agree with the frequency–time characteristics of observed electromagnetic waves. We have analyzed the influence of variations in the density and ionic composition of cold plasma, fluxes of energetic particl. . .
Date: 02/2017 Publisher: Geomagnetism and Aeronomy DOI: 10.1134/S001679321701008X Available at: https://link.springer.com/article/10.1134/S001679321701008X
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis
Abstract: A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020941 Available at: http://doi.wiley.com/10.1002/2014JA020941
More Details
Authors: de Soria-Santacruz M., Li W, Thorne R M, Ma Q, Bortnik J, et al.
Title: Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Abstract: Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmasp. . .
Date: 10/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021148 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
More Details
Authors: Hartley D. P., Chen Y., Kletzing C A, Denton M. H., and Kurth W S
Title: Applying the cold plasma dispersion relation to whistler mode chorus waves: EMFISIS wave measurements from the Van Allen Probes
Abstract: Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and magnetic spectral intensities in the chorus wave band (0.1–0.9 fce). Results from this study indicate that the calculated wave intensity is least accurate during periods of enhanced wave activity. For observed wave intensities >10−3 nT2, using the cold plasma dispersi. . .
Date: 02/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020808 Available at: http://doi.wiley.com/10.1002/2014JA020808
More Details
Authors: Lyons L R, Nishimura Y., Gallardo-Lacourt B., Nicolls M. J., Chen S., et al.
Title: Azimuthal flow bursts in the Inner Plasma Sheet and Possible Connection with SAPS and Plasma Sheet Earthward Flow Bursts
Abstract: We have combined radar observations and auroral images obtained during the PFISR Ion Neutral Observations in the Thermosphere campaign to show the common occurrence of westward moving, localized auroral brightenings near the auroral equatorward boundary and to show their association with azimuthally moving flow bursts near or within the SAPS region. These results indicate that the SAPS region, rather than consisting of relatively stable proton precipitation and westward flows, can have rapidly varying flows, with speeds varying from ~100 m/s to ~1 km/s in just a few minutes. The auroral brightenings are associated with bursts of weak electron precipitation that move westward with the westward flow bursts and extend into the SAPS region. Additionally, our observations show evidence that the. . .
Date: 05/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021023 Available at: http://doi.wiley.com/10.1002/2015JA021023
More Details
B
Authors: Zhao Lei, Yu Yiqun, Delzanno Gian Luca, and Jordanova Vania K.
Title: Bounce- and MLT-averaged diffusion coefficients in a physics-based magnetic field geometry obtained from RAM-SCB for the 17 March 2013 storm
Abstract: Local acceleration via whistler wave and particle interaction plays a significant role in particle dynamics in the radiation belt. In this work we explore gyroresonant wave-particle interaction and quasi-linear diffusion in different magnetic field configurations related to the 17 March 2013 storm. We consider the Earth's magnetic dipole field as a reference and compare the results against nondipole field configurations corresponding to quiet and stormy conditions. The latter are obtained with the ring current-atmosphere interactions model with a self-consistent magnetic field (RAM-SCB), a code that models the Earth's ring current and provides a realistic modeling of the Earth's magnetic field. By applying quasi-linear theory, the bounce- and Magnetic Local Time (MLT)-averaged electron pit. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020858 Available at: http://doi.wiley.com/10.1002/2014JA020858
More Details
C
Authors: Kellerman A. C., Shprits Y Y, Makarevich R. A., Spanswick E., Donovan E., et al.
Title: Characterization of the energy-dependent response of riometer absorption
Abstract: Ground based riometers provide an inexpensive means to continuously remote sense the precipitation of electrons in the dynamic auroral region of Earth's ionosphere. The energy-dependent relationship between riometer absorption and precipitating electrons is thus of great importance for understanding the loss of electrons from the Earth's magnetosphere. In this study, statistical and event-based analyses are applied to determine the energy of electrons to which riometers chiefly respond. Time-lagged correlation analysis of trapped to precipitating fluxes shows that daily averaged absorption best correlates with ~ 60 keV trapped electron flux at zero-time lag, although large variability is observed across different phases of the solar cycle. High-time resolution statistical cross-correlati. . .
Date: 11/2014 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020027 Available at: http://doi.wiley.com/10.1002/2014JA020027
More Details
Authors: Shprits Yuri Y, Kellerman Adam, Drozdov Alexander, Spense Harlan, Reeves Geoffrey, et al.
Title: Combined Convective and Diffusive Simulations: VERB-4D Comparison with March 17, 2013 Van Allen Probes Observations
Abstract: This study is focused on understanding the coupling between different electron populations in the inner magnetosphere and the various physical processes that determine evolution of electron fluxes at different energies. Observations during the March 17, 2013 storm and simulations with a newly developed Versatile Electron Radiation Belt-4D (VERB-4D) are presented. Analysis of the drift trajectories of the energetic and relativistic electrons shows that electron trajectories at transitional energies with a first invariant on the scale of ~100MeV/G may resemble ring current or relativistic electron trajectories depending on the level of geomagnetic activity. Simulations with the VERB-4D code including convection, radial diffusion, and energy diffusion are presented. Sensitivity simulations in. . .
Date: 09/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL065230 Available at: http://doi.wiley.com/10.1002/2015GL065230
More Details
Authors: Katsavrias C., Daglis I. A., Li W, Dimitrakoudis S., Georgiou M., et al.
Title: Combined effects of concurrent Pc5 and chorus waves on relativistic electron dynamics
Abstract: We present electron phase space density (PSD) calculations as well as concurrent Pc5 and chorus wave activity observations during two intense geomagnetic storms caused by interplanetary coronal mass ejections (ICMEs) resulting in contradicting net effect. We show that, during the 17 March 2013 storm, the coincident observation of chorus and relativistic electron enhancements suggests that the prolonged chorus wave activity seems to be responsible for the enhancement of the electron population in the outer radiation belt even in the presence of pronounced outward diffusion. On the other hand, the significant depletion of electrons, during the 12 September 2014 storm, coincides with long-lasting outward diffusion driven by the continuous enhanced Pc5 activity since chorus wave a. . .
Date: 09/2015 Publisher: Annales Geophysicae Pages: 1173 - 1181 DOI: 10.5194/angeo-33-1173-2015 Available at: http://www.ann-geophys.net/33/1173/2015/
More Details
Authors: Katsavrias C., Daglis I. A., Li W, Dimitrakoudis S., Georgiou M., et al.
Title: Combined effects of concurrent Pc5 and chorus waves on relativistic electron dynamics
Abstract: We present electron phase space density (PSD) calculations as well as concurrent Pc5 and chorus wave activity observations during two intense geomagnetic storms caused by interplanetary coronal mass ejections (ICMEs) resulting in contradicting net effect. We show that, during the 17 March 2013 storm, the coincident observation of chorus and relativistic electron enhancements suggests that the prolonged chorus wave activity seems to be responsible for the enhancement of the electron population in the outer radiation belt even in the presence of pronounced outward diffusion. On the other hand, the significant depletion of electrons, during the 12 September 2014 storm, coincides with long-lasting outward diffusion driven by the continuous enhanced Pc5 activity since chorus wave a. . .
Date: 09/2015 Publisher: Annales Geophysicae Pages: 1173 - 1181 DOI: 10.5194/angeo-33-1173-2015 Available at: http://www.ann-geophys.net/33/1173/2015/
More Details
Authors: Kronberg E. A., Grigorenko E. E., Turner D. L., Daly P. W., Khotyaintsev Y., et al.
Title: Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event
Abstract: Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of “dispersionless” injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth's magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless injections are associated with instabilities in the plasma sheet during the growth phase of the substorm, with a dipolarization front at the onset and with magnetic flux pileup during the expansion phase. They show different spatial spread and propagation characteristics. Injection associated with the dipolarization. . .
Date: 03/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023551 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023551/full
More Details
Authors: Denton M. H., Reeves G. E., Thomsen M F, Henderson M G, Friedel R H W, et al.
Title: The complex nature of storm-time ion dynamics: Transport and local acceleration
Abstract: Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained by energy-dependent drift of particles injected on the night side 24 hours earlier. Particle tracing simulations show that the energetic O+ can originate in the magnetotail, not in the ionosphere. Enhanced wave activity is co-located with the heavy-ion rich plasma a. . .
Date: 09/2016 Publisher: Geophysical Research Letters DOI: 10.1002/2016GL070878 Available at: http://onlinelibrary.wiley.com/wol1/doi/10.1002/2016GL070878/abstract
More Details
Authors: Demekhov A. G., Manninen J., ík O., and Titova E. E.
Title: Conjugate Ground-Spacecraft Observations of VLF Chorus Elements
Abstract: We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propagate at small angles to the geomagnetic field and oppositely to its direction, that is, from northern to southern geographic hemisphere. The spacecraft was located at L≃4.1 at a geomagnetic latitude of −12.4∘ close to the plasmapause and inside a localized density . . .
Date: 12/2017 Publisher: Geophysical Research Letters Pages: 11,735 - 11,744 DOI: 10.1002/2017GL076139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017GL076139/full
More Details
Authors: Da Silva L. A., Sibeck D., Alves L. R., Souza V. M., Jauer P. R., et al.
Title: Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014
Abstract: Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the co. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026184 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026184
More Details
Authors: Da Silva L. A., Sibeck D., Alves L. R., Souza V. M., Jauer P. R., et al.
Title: Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014
Abstract: Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the co. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026184 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026184
More Details
Authors: Jaynes A. N., Lessard M. R., Takahashi K., Ali A. F., Malaspina D. M., et al.
Title: Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems
Abstract: Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10's keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with groun. . .
Date: 07/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021380 Available at: http://doi.wiley.com/10.1002/2015JA021380
More Details
Authors: Nag Sreeja, LeMoigne Jacqueline, and de Weck Olivier
Title: Cost and risk analysis of small satellite constellations for earth observation
Abstract: Distributed Space Missions (DSMs) are gaining momentum in their application to Earth science missions owing to their ability to increase observation sampling in spatial, spectral, temporal and angular dimensions. Past literature from academia and industry have proposed and evaluated many cost models for spacecraft as well as methods for quantifying risk. However, there have been few comprehensive studies quantifying the cost for multiple spacecraft, for small satellites and the cost risk for the operations phase of the project which needs to be budgeted for when designing and building efficient architectures. This paper identifies the three critical problems with the applicability of current cost and risk models to distributed small satellite missions and uses data-based modeling to sugges. . .
Date: 03/2014 Publisher: IEEE DOI: 10.1109/AERO.2014.6836396 Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6836396
More Details
Authors: Goldstein J., Angelopoulos V., De Pascuale S., Funsten H. O., Kurth W. S., et al.
Title: Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS
Abstract: We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside sout. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023173 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023173
More Details
Authors: Goldstein J, Angelopoulos V, De Pascuale S., Funsten H O, Kurth W S, et al.
Title: Cross-scale observations of the 2015 St. Patrick's day storm: THEMIS, Van Allen Probes, and TWINS
Abstract: We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick's Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0.7 RE. Van Allen Probes crossed the plasmapause 13 times; test particle simulations reproduce these encounters within 0.5 RE. Before the storm, Van Allen Probes measured quiet double-nose proton spectra in the region of corotating cold plasma. About 15 min after a 0605 UT dayside sout. . .
Date: 01/2017 Publisher: Journal of Geophysical Research: Space Physics Pages: 368 - 392 DOI: 10.1002/jgra.v122.110.1002/2016JA023173 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023173/full
More Details
D
Authors: Cattell C., Breneman A., Colpitts C., Dombeck J., Thaller S., et al.
Title: Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13
Abstract: Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds were significantly less than the propagation speed of the pulse from MMS to the Van Allen Probes and GOES-13, which is consistent with the MHD fast mode. There were increased fluxes of energetic electrons up to several MeV. Signatures of drift echoes and response to ULF. . .
Date: 08/2017 Publisher: Geophysical Research Letters DOI: 10.1002/2017GL074895 Available at: onlinelibrary.wiley.com/doi/10.1002/2017GL074895/full
More Details
Authors: Drozdov A. Y., Shprits Y Y, Aseev N. A., Kellerman A. C., and Reeves G D
Title: Dependence of radiation belt simulations to assumed radial diffusion rates tested for two empirical models of radial transport
Abstract: Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial diffusion simulations. Comparison of the simulation results with observations shows that the difference between simulations with either radial diffusion parameterization is small. To take into account effects of local acceleration and loss, we perform 3-D simulations, in. . .
Date: 01/2017 Publisher: Space Weather Pages: 150 - 162 DOI: 10.1002/swe.v15.110.1002/2016SW001426 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016SW001426/full
More Details
Authors: Allison Hayley J., Horne Richard B, Glauert Sarah A, and Del Zanna Giulio
Title: Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit
Abstract: Variations in the high‐energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower‐energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low‐altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90°. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given . . .
Date: 11/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025786 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025786
More Details
Authors: Hartley D. P., Kletzing C A, De Pascuale S., Kurth W S, and ík O.
Title: Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss
Abstract: A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A statistical calibration is performed against the density from the upper hybrid line, accounting for both systematic offsets and distribution scatter in the hiss‐inferred densities. This calculation and calibration methodology provides accurate density estimates, both stati. . .
Date: 08/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025658 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025658
More Details
Authors: Drake J. F., Agapitov O. V., and Mozer F S
Title: The development of a bursty precipitation front with intense localized parallel electric fields driven by whistler waves
Abstract: The dynamics and structure of whistler turbulence relevant to electron acceleration in the Earth's outer radiation belt is explored with simulations and comparisons with observations. An initial state with an electron temperature anisotropy in a spatially localized domain drives whistlers which scatter electrons. An outward propagating front of whistlers and hot electrons nonlinearly evolves to form regions of intense parallel electric field with structure similar to observations. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Date: 03/2015 Publisher: Geophysical Research Letters DOI: 10.1002/2015GL063528 Available at: http://doi.wiley.com/10.1002/2015GL063528
More Details
Authors: Mann Ian R., Lee E. A., Claudepierre S G, Fennell J. F., Degeling A., et al.
Title: Discovery of the action of a geophysical synchrotron in the Earth’s Van Allen radiation belts
Abstract: Although the Earth’s Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modeling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents . . .
Date: 11/2013 Publisher: Nature Communications DOI: 10.1038/ncomms3795 Available at: http://www.nature.com/doifinder/10.1038/ncomms3795
More Details
Authors: West H I, Buck R M, and Davidson G T
Title: The Dynamics of Energetic Electrons in the Earth’s Outer Radiation Belt During 1968 as Observed by the Lawrence Livermore National Laboratory’s Spectrometer on Ogo 5
Abstract: An account is given of measurements of electrons made by the LLNL magnetic electron spectrometer (60–3000 keV in seven differential energy channels) on the Ogo 5 satellite in the earth's outer-belt regions during 1968 and early 1969. The data were analyzed to identify those features dominated by pitch angle and radial diffusion; in doing so all aspects of phase space covered by the data were studied, including pitch angle distributions and spectral features, as well as decay rates. The pitch angle distributions are reported elsewhere. The spectra observed in the weeks after a storm at L ∼3–4.5 show the evolution of a peak at ∼1.5 MeV and pronounced minima at ∼0.5 MeV. The observed pitch angle diffusion lifetimes are identified as being the shortest decays observed and are found t. . .
Date: 04/1981 Publisher: Journal of Geophysical Research Pages: 2111 - 2142 DOI: 10.1029/JA086iA04p02111 Available at: http://onlinelibrary.wiley.com/doi/10.1029/JA086iA04p02111/abstract
More Details
Authors: Shprits Yuri Y, Horne Richard B, Kellerman Adam C., and Drozdov Alexander Y.
Title: The dynamics of Van Allen belts revisited
Abstract: N/A
Date: 02/2019 Publisher: Nature Physics Pages: 102 - 103 DOI: 10.1038/nphys4350 Available at: https://www.nature.com/articles/nphys4350
More Details
E
Authors: Usanova M. E., Drozdov A., Orlova K., Mann I. R., Shprits Y., et al.
Title: Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations
Abstract: We study the effect of electromagnetic ion cyclotron (EMIC) waves on the loss and pitch angle scattering of relativistic and ultrarelativistic electrons during the recovery phase of a moderate geomagnetic storm on 11 October 2012. The EMIC wave activity was observed in situ on the Van Allen Probes and conjugately on the ground across the Canadian Array for Real-time Investigations of Magnetic Activity throughout an extended 18 h interval. However, neither enhanced precipitation of >0.7 MeV electrons nor reductions in Van Allen Probe 90° pitch angle ultrarelativistic electron flux were observed. Computed radiation belt electron pitch angle diffusion rates demonstrate that rapid pitch angle diffusion is confined to low pitch angles and cannot reach 90°. For the first time, from both obse. . .
Date: 03/2014 Publisher: Geophysical Research Letters Pages: 1375 - 1381 DOI: 10.1002/2013GL059024 Available at: http://doi.wiley.com/10.1002/2013GL059024
More Details
Authors: Degeling A W, Rankin R, Kabin K, Marchand R, and Mann I R
Title: The effect of ULF compressional modes and field line resonances on relativistic electron dynamics
Abstract: The adiabatic, drift-resonant interaction between relativistic, equatorially mirroring electrons and a ULF compressional wave that couples to a field line resonance (FLR) is modelled. Investigations are focussed on the effect of azimuthal localisation in wave amplitude on the electron dynamics. The ULF wave fields on the equatorial plane (r , φ ) are modelled using a box model [Zhu, X., Kivelson, M.G., 1988. Analytic formulation and quantitative solutions of the coupled ULF wave problem. J. Geophys. Res. 93(A8), 8602–8612], and azimuthal variations are introduced by adding a discrete spectrum of azimuthal modes. Electron trajectories are calculated using drift equations assuming constant magnetic moment M , and the evolution of the distribution function f(r,φ,M,t) from an assumed in. . .
Date: 04/2007 Publisher: Planetary and Space Science Pages: 731 - 742 DOI: 10.1016/j.pss.2006.04.039 Available at: http://www.sciencedirect.com/science/article/pii/S0032063306002893
More Details
Authors: Ripoll J.-F., Santol?k O., Reeves G., Kurth W S, Denton M., et al.
Title: Effects of whistler mode hiss waves in March 2013
Abstract: We present simulations of the loss of radiation belt electrons by resonant pitch angle diffusion caused by whistler mode hiss waves for March 2013. Pitch angle diffusion coefficients are computed from the wave properties and the ambient plasma data obtained by the Van Allen Probes with a resolution of 8 hours and 0.1 L-shell. Loss rates follow a complex dynamic structure, imposed by the wave and plasma properties. Hiss effects can be strong, with minimum lifetimes (of ~1 day) moving from energies of ~100 keV at L~5 up to ~2 MeV at L~2, and stop abruptly, similarly to the observed energy-dependent inner belt edge. Periods when the plasmasphere extends beyond L~5 favor long-lasting hiss losses from the outer belt. Such loss rates are embedded in a reduced Fokker-Planck code and validated aga. . .
Date: 06/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024139 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024139/full
More Details
Authors: Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, et al.
Title: The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
Abstract: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation bel. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9993-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9993-6
More Details
Authors: Kletzing C A, Kurth W S, Acuna M, MacDowall R J, Torbert R B, et al.
Title: The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
Abstract: The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation bel. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-9993-6 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-9993-6
More Details
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details
Authors: Wygant J R, Bonnell J W, Goetz K, Ergun R E, Mozer F S, et al.
Title: The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission
Abstract: The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in the spin plane with tip-to-tip separations of 100 meters. The third component of the electric field is measured by two spherical sensors separated by ∼15 m, deployed at the ends of two stacer booms oppositely directed along the spin axis of the spacecraft. The instrume. . .
Date: 11/2013 Publisher: Space Science Reviews DOI: 10.1007/s11214-013-0013-7 Available at: http://link.springer.com/article/10.1007%2Fs11214-013-0013-7
More Details
Authors: Kurth W S, De Pascuale S., Faden J. B., Kletzing C A, Hospodarsky G B, et al.
Title: Electron Densities Inferred from Plasma Wave Spectra Obtained by the Waves Instrument on Van Allen Probes
Abstract: The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Fields Instrument Suite and Integrated Science (EMFISIS) suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves (EFW) triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing . . .
Date: 01/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020857 Available at: http://doi.wiley.com/10.1002/2014JA020857
More Details
Authors: Damiano P.A., Chaston C.C., Hull A.J., and Johnson J.R.
Title: Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations
Abstract: Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field‐aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self‐consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qualitatively accounts for electron observations near the equatorial plane and at higher latitudes. In conjunction with the highly field‐aligned plateaus, loss cone features are also evident, which result from the action of the upward‐directed wave parallel electr. . .
Date: 06/2018 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL077748 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL077748
More Details
Authors: Vasko I. Y., Agapitov O. V., Mozer F S, Artemyev A. V., Drake J. F., et al.
Title: Electron holes in the outer radiation belt: Characteristics and their role in electron energization
Abstract: Van Allen Probes have detected electron holes (EHs) around injection fronts in the outer radiation belt. Presumably generated near equator, EHs propagate to higher latitudes potentially resulting in energization of electrons trapped within EHs. This process has been recently shown to provide electrons with energies up to several tens of keV and requires EH propagation up to rather high latitudes. We have analyzed more than 100 EHs observed around a particular injection to determine their kinetic structure and potential energy sources supporting the energization of trapped electrons. EHs propagate with velocities from 1000 to 20,000 km/s (a few times larger than the thermal velocity of the coldest background electron population). The parallel scale of observed EHs is from 0.3 to 3 km that i. . .
Date: 12/2016 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2016JA023083 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2016JA023083/full
More Details
Authors: Smirnov A. G., Kronberg E. A., Latallerie F., Daly P. W., Aseev N. A., et al.
Title: Electron intensity measurements by the Cluster/RAPID/IES instrument in Earth's radiation belts and ring current
Abstract: The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth's magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high‐energy electrons (<400 keV) and inner‐zone protons (230‐630 keV) in the radiation belts and ring current, the data have been rarely used for inner‐magnetospheric science. The current paper presents two algorithms for background correction. The first algorithm is based on the empirical contamination percentages by both protons and electrons. The second algorithm uses simultaneous proton observations. The efficiencies of these algorithms are demonstrated by comparison of the . . .
Date: 02/2019 Publisher: Space Weather DOI: 10.1029/2018SW001989 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW001989
More Details
Authors: Clilverd Mark A., Duthie Roger, Hardman Rachael, Hendry Aaron T., Rodger Craig J., et al.
Title: Electron precipitation from EMIC waves: a case study from 31 May 2013
Abstract: On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, i. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021090 Available at: http://doi.wiley.com/10.1002/2015JA021090
More Details
Authors: Clilverd Mark A., Duthie Roger, Hardman Rachael, Hendry Aaron T., Rodger Craig J., et al.
Title: Electron precipitation from EMIC waves: a case study from 31 May 2013
Abstract: On 31 May 2013 several rising-tone electromagnetic ion-cyclotron (EMIC) waves with intervals of pulsations of diminishing periods (IPDP) were observed in the magnetic local time afternoon and evening sectors during the onset of a moderate/large geomagnetic storm. The waves were sequentially observed in Finland, Antarctica, and western Canada. Co-incident electron precipitation by a network of ground-based Antarctic Arctic Radiation-belt Dynamic Deposition VLF Atmospheric Research Konsortia (AARDDVARK) and riometer instruments, as well as the Polar-orbiting Operational Environmental Satellite (POES) electron telescopes, was also observed. At the same time POES detected 30-80 keV proton precipitation drifting westwards at locations that were consistent with the ground-based observations, i. . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021090 Available at: http://doi.wiley.com/10.1002/2015JA021090
More Details
Authors: Engebretson M. J., Posch J. L., Braun D. J., Li W, Ma Q, et al.
Title: EMIC wave events during the four GEM QARBM challenge intervals
Abstract: This paper presents observations of EMIC waves from multiple data sources during the four GEM challenge events in 2013 selected by the GEM “Quantitative Assessment of Radiation Belt Modeling” focus group: March 17‐18 (Stormtime Enhancement), May 31‐June 2 (Stormtime Dropout), September 19‐20 (Non‐storm Enhancement), and September 23‐25 (Non‐storm Dropout). Observations include EMIC wave data from the Van Allen Probes, GOES, and THEMIS spacecraft in the near‐equatorial magnetosphere and from several arrays of ground‐based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low‐altitude POES spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patte. . .
Date: 07/2018 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025505 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025505
More Details
Authors: Drozdov A. Y., Shprits Y Y, Usanova M. E., Aseev N. A., Kellerman A. C., et al.
Title: EMIC wave parameterization in the long-term VERB code simulation
Abstract: Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1 year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we co. . .
Date: 08/2017 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2017JA024389 Available at: http://onlinelibrary.wiley.com/doi/10.1002/2017JA024389/full
More Details
Authors: Denton M. H., Thomsen M F, Jordanova V K, Henderson M G, Borovsky J E, et al.
Title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
Abstract: Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied. . .
Date: 04/2015 Publisher: Space Weather DOI: 10.1002/2015SW001168 Available at: http://doi.wiley.com/10.1002/2015SW001168
More Details
Authors: Denton M. H., Thomsen M F, Jordanova V K, Henderson M G, Borovsky J E, et al.
Title: An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit
Abstract: Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values of Kp. Bilinear interpolation is used between grid points to provide the ion flux and the electron flux values at any energy and local time, and for given values of geomagnetic activity (proxied by the 3 h Kp index), and also for given values of solar activity (proxied. . .
Date: 04/2015 Publisher: Space Weather DOI: 10.1002/2015SW001168 Available at: http://doi.wiley.com/10.1002/2015SW001168
More Details
Authors: Drozdov A. Y., Shprits Y Y, Orlova K.G., Kellerman A. C., Subbotin D. A., et al.
Title: Energetic, relativistic and ultra-relativistic electrons: Comparison of long-term VERB code simulations with Van Allen Probes measurements
Abstract: In this study, we compare long-term simulations performed by the Versatile Electron Radiation Belt (VERB) code with observations from the MagEIS and REPT instruments on the Van Allen Probes satellites. The model takes into account radial, energy, pitch-angle and mixed diffusion, losses into the atmosphere, and magnetopause shadowing. We consider the energetic (>100 keV), relativistic (~0.5-1 MeV) and ultra-relativistic (>2 MeV) electrons. One year of relativistic electron measurements (μ=700 MeV/G) from October 1, 2012 to October 1, 2013, are well reproduced by the simulation during varying levels of geomagnetic activity. However, for ultra-relativistic energies (μ=3500 MeV/G), the VERB code simulation overestimates electron fluxes and Phase Space Density. These results indicate that an . . .
Date: 04/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2014JA020637 Available at: http://doi.wiley.com/10.1002/2014JA020637
More Details
Authors: Reeves Geoffrey D, Friedel Reiner H W, Larsen Brian A., Skoug Ruth M., Funsten Herbert O., et al.
Title: Energy dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.
Abstract: We present observations of the radiation belts from the HOPE and MagEIS particle detectors on the Van Allen Probes satellites that illustrate the energy-dependence and L-shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on March 1 in more detail. The observations show: (a) At all L-shells, lower-energy electrons are enhanced more often than higher energies; (b) Events that fill the slot region are more common at lower energies; (c) Enhancements of electrons in the inner zone are more common at lower energies; and (d) Even when events do not fully fill the slot region, enhancements at lower-energies tend to extend to lower L-shells than higher energies. During enhancement events the outer zone extends to lower L-shells at lower energie. . .
Date: 12/2015 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1002/2015JA021569 Available at: http://doi.wiley.com/10.1002/2015JA021569http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1002%2F2015JA021569
More Details
Authors: Turner D. L., Fennell J. F., Blake J B, Clemmons J. H., Mauk B H, et al.
Title: Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission
Abstract: We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA's Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7–9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially due to precipitation by strong parallel electrostatic wavefields or initial sources in the lobes. Electrons at energies higher than the threshold are accelerated cumulatively by a series of impulsive magnetic dipolarization events. This case demonstrates how the upper energy cutoff increa. . .
Date: 08/2016 Publisher: Geophysical Research Letters Pages: 7785 - 7794 DOI: 10.1002/2016GL069691 Available at: http://doi.wiley.com/10.1002/2016GL069691
More Details
Authors: Goldstein J, De Pascuale S., and Kurth W S
Title: Epoch‐Based Model for Stormtime Plasmapause Location
Abstract: The output of a plasmapause test particle (PTP) code is used to formulate a new epoch‐based plasmapause model. The PTP simulation is run for an ensemble of 60 storms spanning 3 September 2012 to 28 September 2017 and having peak Dst of −60 nT or less, yielding over 7 million model plasmapause locations. Events are automatically identified and epoch times calculated relative to the respective storm peaks. Epoch analysis of the simulated plasmapause is demonstrated to be an effective method to reveal the dynamical phases of plume formation and evolution. The plasmapause radius is found to be strongly correlated with positive solar wind electric field. The epoch‐binned PTP data are used to create the first analytical model of the plasmapause that explicitly includes plumes. We obtain th. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025996 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025996
More Details

Pages