Biblio

Found 475 results
Filters: First Letter Of Last Name is L  [Clear All Filters]
2019
Authors: Zhao H., Baker D.N., Li X, Malaspina D.M., Jaynes A.N., et al.
Title: On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study
Abstract: Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8–7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy‐dependent acceleration of ultrarelativistic electrons in the outer belt. Especially, for electrons with very high energies (~7 MeV), prevalent positive phase space density radial gradients support inward radial diffusion being responsible for electron acceleration in the cente. . .
Date: 10/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027111 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027111
More Details
Authors: Chen Huayue, Gao Xinliang, Lu Quanming, and Wang Shui
Title: Analyzing EMIC Waves in the Inner Magnetosphere Using Long‐Term Van Allen Probes Observations
Abstract: With 64‐month magnetic data from Van Allen Probes, we have studied not only the global distribution, wave normal angle (θ), and ellipticity (ε) of electromagnetic ion cyclotron (EMIC) waves, but also the dependence of their occurrence rates and magnetic amplitudes on the AE* index (the mean value of AE index over previous 1 hr). Our results show that H+ band waves are preferentially detected at 5 ≤ L ≤ 6.5, in the noon sector. They typically have small θ (<30°) and weakly left‐hand polarization but become more oblique and linearly polarized at larger magnetic latitudes or L‐shells. With the increase of AE* index, their occurrence rate significantly increases in the noon sector, and their source region extends to dusk sector. He+ band waves usually occur in the predawn and mor. . .
Date: 08/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 7402 - 7412 DOI: 10.1029/2019JA026965 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026965
More Details
Authors: Teng Shangchun, Li Wen, Tao Xin, Ma Qianli, and Shen Xiaochen
Title: Characteristics and Generation of Low‐Frequency Magnetosonic Waves Below the Proton Gyrofrequency
Abstract: We report a Van Allen Probes observation of large‐amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low‐frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to December 2018. The spatial distribution shows that these low‐frequency magnetosonic emissions are dominantly observed inside the plasmasphere from the prenoon to the midnight sector within 5° of the geomagnetic equator and typically have modest‐to‐strong wave ampli. . .
Date: 10/2019 Publisher: Geophysical Research Letters Pages: 11652 - 11660 DOI: 10.1029/2019GL085372 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL085372
More Details
Authors: Xu Jiyao, He Zhaohai, Baker D.N., Roth Ilan, Wang C., et al.
Title: Characteristics of high energy proton responses to geomagnetic activities in the inner radiation belt observed by the RBSP satellite
Abstract: High energy trapped particles in the radiation belts constitute potential threats to the functionality of satellites as they enter into those regions. In the inner radiation belt, the characteristics of high‐energy (>20MeV) protons variations during geomagnetic activity times have been studied by implementing four‐year (2013‐2016) observations of the Van Allen probes. An empirical formula has been used to remove the satellite orbit effect, by which proton fluxes have been normalized to the geomagnetic equator. Case studies show that the region of L<1.7 is relatively stable, while L>1.7 is more dynamic and the most significant variation of proton fluxes occurs at L=2.0. The four‐year survey at L=2.0 indicates that for every geomagnetic storm, sharp descent in proton fluxes is accomp. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026205 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026205
More Details
Authors: Zhao H., Johnston W.R., Baker D.N., Li X, Ni B, et al.
Title: Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements
Abstract: Based on the measurements of ~100‐keV to 10‐MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump‐on‐tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L‐shells during injections of lower‐energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026697 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026697
More Details
Authors: Ferradas C. P., Jordanova V K, Reeves G D, and Larsen B A
Title: Comparison of Electron Loss Models in the Inner Magnetosphere During the 2013 St. Patrick's Day Geomagnetic Storm
Abstract: Electrons with energies in the keV range play an important role in the dynamics of the inner magnetosphere. Therefore, accurately modeling electron fluxes in this region is of great interest. However, these calculations constitute a challenging task since the lifetimes of electrons that are available have limitations. In this study, we simulate electron fluxes in the energy range of 20 eV to 100 keV to assess how well different electron loss models can account for the observed electron fluxes during the Geospace Environment Modelling Challenge Event of the 2013 St. Patrick's Day storm. Three models (Case 1, Case 2, and Case 3) of electron lifetimes due to wave‐induced pitch angle scattering are used to compute the fluxes, which are compared with measurements from the Van Allen Probes. Th. . .
Date: 09/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 7872 - 7888 DOI: 10.1029/2019JA026649 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026649
More Details
Authors: Baker D.N., Zhao H., Li X, Kanekal S.G., Jaynes A.N., et al.
Title: Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES‐15 Measurements: 2012‐2018
Abstract: Electron fluxes (especially at energies E > 0.8 and >2 MeV) have been measured for many years by sensors on board the Geostationary Operational Environmental Satellite (GOES). These long‐term data (nominally at L~6.6) have become a mainstay for monitoring the Earth's radiation environment. We have carried out a study directly comparing the comprehensive radiation belt particle measurements from the NASA dual‐spacecraft Van Allen Probes (Radiation Belt Storm Probes) sensor systems with selected GOES operational data. The Van Allen Probes have measured the properties of radiation belt electrons virtually continuously from September 2012 through 2018. We make statistical comparisons of Van Allen Probes electron data near L=6 with concurrent daily averages of equivalent GOES‐15 flux . . .
Date: 11/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027331 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027331
More Details
Authors: Da Silva L. A., Sibeck D., Alves L. R., Souza V. M., Jauer P. R., et al.
Title: Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014
Abstract: Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfvénic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the co. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026184 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026184
More Details
Authors: Pinto V. A., Mourenas D., Bortnik J, Zhang X.‐J., Artemyev A. V., et al.
Title: Decay of Ultrarelativistic Remnant Belt Electrons Through Scattering by Plasmaspheric Hiss
Abstract: Ultrarelativistic electron remnant belts appear frequently following geomagnetic disturbances and are located in‐between the inner radiation belt and a reforming outer belt. As remnant belts are relatively stable, here we explore the importance of hiss and electromagnetic ion cyclotron waves in controlling the observed decay rates of remnant belt ultrarelativistic electrons in a statistical way. Using measurements from the Van Allen Probes inside the plasmasphere for 25 remnant belt events that occurred between 2012 and 2017 and that are located in the region 2.9Date: Dec-07-2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026509 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026509
More Details
Authors: Chen Margaret W., Lemon Colby L., Hecht James, Sazykin Stanislav, Wolf Richard A., et al.
Title: Diffuse Auroral Electron and Ion Precipitation Effects on RCM‐E Comparisons with Satellite Data During the March 17, 2013 Storm
Abstract: Effects of scattering of electrons from whistler chorus waves and of ions due to field line curvature on diffuse precipitating particle fluxes and ionospheric conductance during the large 17 March 2013 storm are examined using the self‐consistent Rice Convection Model Equilibrium (RCM‐E) model. Electrons are found to dominate the diffuse precipitating particle integrated energy flux, with large fluxes from ~21:00 magnetic local time (MLT) eastward to ~11:00 MLT during the storm main phase. Simulated proton and oxygen ion precipitation due to field line curvature scattering is sporadic and localized, occurring where model magnetic field lines are significantly stretched on the night side at equatorial geocentric radial distances r0 ≳8 RE and/or at r0 ~5.5 to 6.5 RE from dusk to midnig. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026545 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026545
More Details
Authors: Capannolo L., Li W, Ma Q, Chen L, Shen X.‐C., et al.
Title: Direct Observation of Subrelativistic Electron Precipitation Potentially Driven by EMIC Waves
Abstract: Electromagnetic ion cyclotron (EMIC) waves are known to typically cause electron losses into Earth's upper atmosphere at >~1 MeV, while the minimum energy of electrons subject to efficient EMIC‐driven precipitation loss is unresolved. This letter reports electron precipitation from subrelativistic energies of ~250 keV up to ~1 MeV observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD‐II) CubeSats, while two Polar Operational Environmental Satellites (POES) observed proton precipitation nearby. Van Allen Probe A detected EMIC waves (~0.7–2.0 nT) over the similar L shell extent of electron precipitation observed by FIREBIRD‐II, albeit with a ~1.6 magnetic local time (MLT) difference. Although plasmaspheric hiss and magnetosonic . . .
Date: 11/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL084202 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084202
More Details
Authors: Li W, and Hudson M.K.
Title: Earth's Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era
Abstract: Discovery of the Earth's Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scattering. This scattering lowers the mirror altitude for particles in their bounce motion parallel to the Earth's magnetic field until they suffer collisional loss. A view of the belts as quasi‐static inner and outer zones of energetic particles with different sources was modified by ob. . .
Date: 11/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025940 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025940
More Details
Authors: Yamamoto K., Nosé M., Keika K, Hartley D.P., Smith C.W., et al.
Title: Eastward Propagating Second Harmonic Poloidal Waves Triggered by Temporary Outward Gradient of Proton Phase Space Density: Van Allen Probe A Observation
Abstract: Two wave packets of second harmonic poloidal Pc 4 waves with a wave frequency of ~7 mHz were detected by Van Allen Probe A at a radial distance of ~5.8 RE and magnetic local time of 13 hr near the magnetic equator, where plasmaspheric refilling was in progress. Proton butterfly distributions with energy dispersions were also measured at the same time; the proton fluxes at 10‐30 keV oscillated with the same frequency as the Pc 4 waves. Using the ion sounding technique, we find that the Pc 4 waves propagated eastward with an azimuthal wave number (m number) of ~220 and ~260 for each wave packet, respectively. Such eastward propagating high‐m (m > 100) waves were seldom reported in previous studies. The condition of drift‐bounce resonance is well satisfied for the estimated m numbers in. . .
Date: 11/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027158 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027158
More Details
Authors: Yu J., Li L. Y., Cui J., Cao J. B., and Wang J.
Title: Effect of Low‐Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere
Abstract: In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly‐like electron pitch angle distributions and the emission of low‐harmonic (LH) fast magnetosonic (MS) waves inside the high‐density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly‐like distributions for both events (near‐equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low‐energy electrons (<~150 keV) show butterfly‐like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different‐energy electrons through the bounc. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026328 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026328
More Details
Authors: Zhao H., Baker D N, Li X, Jaynes A. N., and Kanekal S G
Title: The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements
Abstract: Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8‐ to 7.7‐MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense stor. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1948 - 1965 DOI: 10.1029/2018JA026257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026257
More Details
Authors: Smirnov A. G., Kronberg E. A., Latallerie F., Daly P. W., Aseev N. A., et al.
Title: Electron intensity measurements by the Cluster/RAPID/IES instrument in Earth's radiation belts and ring current
Abstract: The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth's magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high‐energy electrons (<400 keV) and inner‐zone protons (230‐630 keV) in the radiation belts and ring current, the data have been rarely used for inner‐magnetospheric science. The current paper presents two algorithms for background correction. The first algorithm is based on the empirical contamination percentages by both protons and electrons. The second algorithm uses simultaneous proton observations. The efficiencies of these algorithms are demonstrated by comparison of the . . .
Date: 02/2019 Publisher: Space Weather DOI: 10.1029/2018SW001989 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018SW001989
More Details
Authors: Capannolo L., Li W, Ma Q, Shen X.‐C., Zhang X.‐J., et al.
Title: Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity
Abstract: Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magn. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026291 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026291
More Details
Authors: Juhász Lilla, Omura Yoshiharu, Lichtenberger János, and Friedel Reinhard H.
Title: Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region
Abstract: In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground‐based data in order to derive the lower‐energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026337 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026337
More Details
Authors: Lotekar Ajay, Kakad Amar, and Kakad Bharati
Title: Formation of Asymmetric Electron Acoustic Double Layers in the Earth's Inner Magnetosphere
Abstract: The Van Allen Probes have observed both symmetric and asymmetric bipolar electric field structures in the Earth's inner magnetosphere. In general, the symmetric bipolar structures are identified as electron‐phase space holes, whereas the asymmetric structures are interpreted as electron acoustic double layers (EADLs). The generation mechanism of these EADLs is not entirely understood yet. We have modeled the EADLs observed on 13 November 2012 by Van Allen Probe‐B. We performed a fluid simulation of the EADLs and tracked their formation and evolution in the simulation. We found that the localized depletion and enhancement in the electron populations act as a perturbation to excite the symmetric bipolar electron acoustic solitary waves, which later evolve into the EADLs. The Ponderomotiv. . .
Date: 08/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 6896 - 6905 DOI: 10.1029/2018JA026303 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026303
More Details
Authors: Lessard Marc R., Paulson Kristoff, Spence Harlan E., Weaver Carol, Engebretson Mark J, et al.
Title: Generation of EMIC Waves and Effects on Particle Precipitation During a Solar Wind Pressure Intensification with B z >
Abstract: During geomagnetic storms, some fraction of the solar wind energy is coupled via reconnection at the dayside magnetopause, a process that requires a southward interplanetary magnetic field Bz. Through a complex sequence of events, some of this energy ultimately drives the generation of electromagnetic ion cyclotron (EMIC) waves, which can then scatter energetic electrons and ions from the radiation belts. In the event described in this paper, the interplanetary magnetic field remained northward throughout the event, a condition unfavorable for solar wind energy coupling through low‐latitude reconnection. While this resulted in SYM/H remaining positive throughout the event (so this may not be considered a storm, in spite of the very high solar wind densities), pressure fluctuations were d. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026477 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026477
More Details
Authors: Zhao Wanli, Liu Si, Zhang Sai, Zhou Qinghua, Yang Chang, et al.
Title: Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts
Abstract: Auroral kilometric radiation (AKR) can potentially produce serious damage to space‐borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3–6.5 and 00–24 magnetic local time (MLT), with a higher occurrence on the nightside (20–24 MLT and 00–04 MLT) within L= 5–6.5. All the AKR events are observed to be accompanied with suprathermal (∼1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to th. . .
Date: 07/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083944
More Details
Authors: Chen Yaru, Zhou Qinghua, He Yihua, Yang Chang, Liu Si, et al.
Title: Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions
Abstract: Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L‐shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4‐6 and 00‐24 MLT, with a higher occurrence in the region of L=5‐6 and 06‐19 MLT. The electron phase space density exhibits a distinct ring distribution (∂f/∂v⊥ >0) with the peak energy around a few keV. Both ECH wave events and the electron ring distributions are closely related and . . .
Date: 04/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082668 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082668
More Details
Authors: Khoo L.‐Y., Li X, Zhao H., Chu X., Xiang Z., et al.
Title: How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions
Abstract: In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > −30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)‐driven and corotating interaction region (CIR)‐driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecutive orbital passes) <400‐keV electron enhancements during quiet periods. Our analysis reveals an incredibly cohesive observation that holds regardless of electron energies (~30 keV–2.5 MeV) or geomagnetic conditions: the innermost Lpp is the innermost boundary . . .
Date: 11/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA027412 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA027412
More Details
Authors: Chu Xiangning, Malaspina David, Gallardo‐Lacourt Bea, Liang Jun, Andersson Laila, et al.
Title: Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground
Abstract: The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes' footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline‐only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi‐static subauroral ion drift electric field and parallel‐accelerated electrons by kinetic Alfvén waves. These parallel electrons could precipitate and be accelerated via auroral accel. . .
Date: 11/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082789
More Details
Authors: Chu Xiangning, Malaspina David, Gallardo‐Lacourt Bea, Liang Jun, Andersson Laila, et al.
Title: Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground
Abstract: The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes' footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline‐only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi‐static subauroral ion drift electric field and parallel‐accelerated electrons by kinetic Alfvén waves. These parallel electrons could precipitate and be accelerated via auroral accel. . .
Date: 11/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082789
More Details
Authors: Chu Xiangning, Malaspina David, Gallardo‐Lacourt Bea, Liang Jun, Andersson Laila, et al.
Title: Identifying STEVE's Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground
Abstract: The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes' footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline‐only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi‐static subauroral ion drift electric field and parallel‐accelerated electrons by kinetic Alfvén waves. These parallel electrons could precipitate and be accelerated via auroral accel. . .
Date: 11/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082789
More Details
Authors: Qin Murong, Hudson Mary, Li Zhao, Millan Robyn, Shen Xiaochen, et al.
Title: Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015
Abstract: In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4–3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC w. . .
Date: 05/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025726 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA025726
More Details
Authors: Qin Murong, Hudson Mary, Kress Brian, Selesnick Richard, Engel Miles, et al.
Title: Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017
Abstract: In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse‐height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consist. . .
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026380 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026380
More Details
Authors: Ma Q, Li W, Yue C., Thorne R M, Bortnik J, et al.
Title: Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth's Inner Magnetosphere
Abstract: Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth's magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen‐ and helium‐band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi‐linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen‐ and helium‐band EMIC waves, respectively. Moreover, we fou. . .
Date: 06/2019 Publisher: Geophysical Research Letters Pages: 6258 - 6267 DOI: 10.1029/2019GL083513 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083513
More Details
Authors: Ripoll J.‐F., Farges T., Lay E. H., and Cunningham G. S.
Title: Local and Statistical Maps of Lightning‐Generated Wave Power Density Estimated at the Van Allen Probes Footprints From the World‐Wide Lightning Location Network Database
Abstract: We propose a new method that uses the World‐Wide Lightning Location Network (WWLLN) to estimate both the local and the drift lightning power density at the Van Allen Probes footprints during 4.3 years (~2 × 108 strokes.). The ratio of the drift power density to the local power density defines a time‐resolved WWLLN‐based model of lightning‐generated wave (LGW) power density ratio, RWWLLN. RWWLLNis computed every ~34 s. This ratio multiplied by the time‐resolved LGW intensity measured by the Probes allows direct computation of pitch angle diffusion coefficients used in radiation belt codes. Statistical analysis shows the median power density ratio is urn:x-wiley:00948276:media:grl58808:grl58808-math-0001 over the Americas. Elsewhere, urn:x-wiley:00948276:media:grl58808:grl58808-ma. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 4122 - 4133 DOI: 10.1029/2018GL081146 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081146
More Details
Authors: He Zhaoguo, Chen Lunjin, Liu Xu, Zhu Hui, Liu Si, et al.
Title: Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes
Abstract: The generation of a high‐frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (∼10−6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1–2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally insi. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 1141 - 1148 DOI: 10.1029/2018GL081578 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081578
More Details
Authors: He Zhaoguo, Chen Lunjin, Liu Xu, Zhu Hui, Liu Si, et al.
Title: Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes
Abstract: The generation of a high‐frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (∼10−6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1–2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally insi. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 1141 - 1148 DOI: 10.1029/2018GL081578 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081578
More Details
Authors: Hua Man, Li Wen, Ma Qianli, Ni Binbin, Nishimura Yukitoshi, et al.
Title: Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5
Abstract: We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three‐dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave‐particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave‐p. . .
Date: 09/2019 Publisher: Geophysical Research Letters Pages: 10967 - 10976 DOI: 10.1029/2019GL084822 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084822
More Details
Authors: Hua Man, Li Wen, Ma Qianli, Ni Binbin, Nishimura Yukitoshi, et al.
Title: Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5
Abstract: We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three‐dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave‐particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave‐p. . .
Date: 09/2019 Publisher: Geophysical Research Letters Pages: 10967 - 10976 DOI: 10.1029/2019GL084822 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL084822
More Details
Authors: Zhu Hui, Chen Lunjin, Liu Xu, and Shprits Yuri Y
Title: Modulation of Locally Generated Equatorial Noise by ULF Wave
Abstract: In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026199 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026199
More Details
Authors: Baker Daniel N, Hoxie Vaughn, Zhao Hong, Jaynes Allison N., Kanekal Shri, et al.
Title: Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss
Abstract: In addition to clarifying morphological structures of the Earth's radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6‐year period 1 September 2. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026259 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026259
More Details
Authors: Wang Zihan, Zou Shasha, Shepherd Simon G., Liang Jun, Gjerloev Jesper W., et al.
Title: Multi‐instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection
Abstract: Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large‐scale SAPS (LS‐SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0. . .
Date: 03/2019 Publisher: Journal of Geophysical Research: Space Physics Pages: 1770 - 1784 DOI: 10.1029/2019JA026535 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026535
More Details
Authors: Soto-Chavez A. R., Lanzerotti L J, Manweiler J W, Gerrard A., Cohen R., et al.
Title: Observational evidence of the drift-mirror plasma instability in Earth's inner magnetosphere
Abstract: We report on evidence for the generation of an ultra-low frequency plasma wave by the drift-mirror plasma instability in the dynamic plasma environment of Earth's inner magnetosphere. The plasma measurements are obtained from the Radiation Belt Storm Probes Ion Composition Experiment onboard NASA's Van Allen Probes Satellites. We show that the measured wave-particle interactions are driven by the drift-mirror instability. Theoretical analysis of the data demonstrates that the drift-mirror mode plasma instability condition is well satisfied. We also demonstrate, for the first time, that the measured wave growth rate agrees well with the predicted linear theory growth rate. Hence, the in-situ space plasma observations and theoretical analysis demonstrate that local generation of ultra-low fr. . .
Date: 04/2019 Publisher: Physics of Plasmas Pages: 042110 DOI: 10.1063/1.5083629 Available at: https://doi.org/10.1063/1.5083629
More Details
Authors: Shi Run, Li Wen, Ma Qianli, Green Alex, Kletzing Craig A., et al.
Title: Properties of Whistler Mode Waves in Earth's Plasmasphere and Plumes
Abstract: Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5‐year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01–0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05–0.5 fce with oblique wave normal angl. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026041 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026041
More Details
Authors: Li W, Shen X.‐C., Ma Q, Capannolo L., Shi R., et al.
Title: Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss
Abstract: Whistler mode waves are important for precipitating energetic electrons into Earth's upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi‐linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scatter. . .
Date: 03/2019 Publisher: Geophysical Research Letters Pages: 3615 - 3624 DOI: 10.1029/2019GL082095 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082095
More Details
Authors: Dai Guyue, Su Zhenpeng, Liu Nigang, Wang Bin, Zheng Huinan, et al.
Title: Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections
Abstract: Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler‐mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high‐ and low‐density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL082944 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL082944
More Details
Authors: Boyd A. J., Reeves G D, Spence H E, Funsten H O, Larsen B A, et al.
Title: RBSP‐ECT Combined Spin‐Averaged Electron Flux Data Product
Abstract: We describe a new data product combining the spin‐averaged electron flux measurements from the Radiation Belt Storm Probes (RBSP) Energetic Particle Composition and Thermal Plasma (ECT) suite on the National Aeronautics and Space Administration's Van Allen Probes. We describe the methodology used to combine each of the data sets and produce a consistent set of spectra for September 2013 to the present. Three‐minute‐averaged flux spectra are provided spanning energies from 15 eV up to 20 MeV. This new data product provides additional utility to the ECT data and offers a consistent cross calibrated data set for researchers interested in examining the dynamics of the inner magnetosphere across a wide range of energies.
Date: 10/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026733 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JA026733
More Details
Authors: Claudepierre S G, O'Brien T P, Looper M D, Blake J B, Fennell J. F., et al.
Title: A Revised Look at Relativistic Electrons in the Earth's Inner Radiation Zone and Slot Region
Abstract: We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inn. . .
Date: 01/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA026349 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018JA026349
More Details
Authors: Cao Xing, Ni Binbin, Summers Danny, Shprits Yuri Y, Gu Xudong, et al.
Title: Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution
Abstract: Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field‐aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of ≤10 keV protons. For >10 keV protons, the field‐aligned propagation approximation results in a pronounced underestimate of the scattering of intermediate equatorial pitch angle protons and overestimates the scattering of high equatorial pitch angle protons by orders of magnitude. Ou. . .
Date: 01/2019 Publisher: Geophysical Research Letters Pages: 590 - 598 DOI: 10.1029/2018GL081550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081550
More Details
Authors: Lejosne Solène, and Mozer F S
Title: Shorting Factor In‐Flight Calibration for the Van Allen Probes DC Electric Field Measurements in the Earth's Plasmasphere
Abstract: Satellite‐based direct electric field measurements deliver crucial information for space science studies. Yet they require meticulous design and calibration. In‐flight calibration of double‐probe instruments is usually presented in the most common case of tenuous plasmas, where the presence of an electrostatic structure surrounding the charged spacecraft alters the geophysical electric field measurements. To account for this effect and the uncertainty in the boom length, the measured electric field is multiplied by a parameter called the shorting factor (sf). In the plasmasphere, the Debye length is very small in comparison with spacecraft dimension, and there is no shorting of the electric field measurements (sf = 1). However, the electric field induced by spacecraft motion greatly . . .
Date: 04/2019 Publisher: Earth and Space Science Pages: 646 - 654 DOI: 10.1029/2018EA000550 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018EA000550
More Details
Authors: Patel Maulik, Li Zhao, Hudson Mary, Claudepierre Seth, and Wygant John
Title: Simulation of Prompt Acceleration of Radiation Belt Electrons During the 16 July 2017 Storm
Abstract: We investigate the prompt enhancement of radiation belt electron flux observed by the Relativistic Electron Proton Telescope instrument on board Van Allen Probes following the 16 July 2017 CME‐shock compression using MHD‐test particle simulations. The prompt enhancements can be explained by the source population interacting with the azimuthally directed electric field impulses induced by CME‐shock compressions of the dayside magnetopause. Electrons in drift resonance with the electric field impulse were accelerated by ∼ 0.6 MeV on a drift period timescale (in minutes) as the impulse propagated from the dayside to the nightside around the flanks of the magnetosphere. MHD test particle simulation of energization and drift phase bunching, due to the bipolar electric field that accompa. . .
Date: 06/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083257 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083257
More Details
Authors: Eshetu W. W., Lyon J G, Hudson M K, and Wiltberger M. J.
Title: Simulations of Electron Energization and Injection by BBFs Using High-Resolution LFM MHD Fields
Abstract: We study electron injection and energization by bursty bulk flows (BBFs), by tracing electron trajectories using magnetohydrodynamic (MHD) field output from the Lyon‐Fedder‐Mobarry (LFM) code. The LFM MHD simulations were performed using idealized solar wind conditions to produce BBFs. We show that BBFs can inject energetic electrons of few to 100 keV from the magnetotatail beyond −24 RE to inward of geosynchronous, while accelerating them in the process. We also show the dependence of energization and injection on the initial relative position of the electrons to the magnetic field structure of the BBF, the initial pitch angle, and the initial energy. In addition, we have shown that the process can be nonadiabatic with violation of the first adiabatic invariant (μ). Further, we d. . .
Date: 02/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2018JA025789 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JA025789
More Details
Authors: Lanzerotti Louis J.
Title: Space Research and Space Weather: Some Personal Vignettes 1965 to Early 1980s
Abstract: Personal vignettes are given on early days of space research, space weather, and space advisory activities from 1965 to early 1980s.
Date: 04/2019 Publisher: Journal of Geophysical Research: Space Physics DOI: 10.1029/2019JA026763 Available at: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JA026763
More Details
Authors: Shen Xiao‐Chen, Li Wen, Ma Qianli, Agapitov Oleksiy, and Nishimura Yukitoshi
Title: Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations
Abstract: Chorus waves are known to accelerate or scatter energetic electrons via quasi‐linear or nonlinear wave‐particle interactions in the Earth's magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315±32 km over L shells of ~5–6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direc. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2019GL083118 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019GL083118
More Details
Authors: Zhang Wenxun, Ni Binbin, Huang He, Summers Danny, Fu Song, et al.
Title: Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons
Abstract: Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0–6.0 and MLT = 18–21, hiss emissions occur concurrently with a rate of >~80%. Plume hiss can efficiently scatter ~10‐ to 100‐keV electrons at rates up to ~10−4 s−1 near the loss cone, and the resultant electron loss timescales vary largely with energy, that is, from less than an hour for tens of kiloelectron volt electrons to several days for hundreds of kiloelectron volt electrons an. . .
Date: 05/2019 Publisher: Geophysical Research Letters DOI: 10.1029/2018GL081863 Available at: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2018GL081863
More Details

Pages