Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 83 entries in the Bibliography.


Showing entries from 51 through 83


2016

Ultrarelativistic electron butterfly distributions created by parallel acceleration due to magnetosonic waves

The Van Allen Probe observations during the recovery phase of a large storm that occurred on 17 March 2015 showed that the ultrarelativistic electrons at the inner boundary of the outer radiation belt (L* = 2.6\textendash3.7) exhibited butterfly pitch angle distributions, while the inner belt and the slot region also showed evidence of sub-MeV electron butterfly distributions. Strong magnetosonic waves were observed in the same regions and at the same time periods as these butterfly distributions. Moreover, when these magnetosonic waves extended to higher altitudes (L* = 4.1), the butterfly distributions also extended to the same region. Combining test particle calculations and Fokker-Planck diffusion simulations, we successfully reproduced the formation of the ultrarelativistic electron butterfly distributions, which primarily result from parallel acceleration caused by Landau resonance with magnetosonic waves. The coexistence of ultrarelativistic electron butterfly distributions with magnetosonic waves was also observed in the 24 June 2015 storm, providing further support that the magnetosonic waves play a key role in forming butterfly distributions.

Li, Jinxing; Bortnik, Jacob; Thorne, Richard; Li, Wen; Ma, Qianli; Baker, Daniel; Reeves, Geoffrey; Fennell, Joseph; Spence, Harlan; Kletzing, Craig; Kurth, William; Hospodarsky, George; Angelopoulos, Vassilis; Blake, Bernard.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2016

YEAR: 2016     DOI: 10.1002/2016JA022370

butterfly distributions; Landau resonance; magnetosonic waves; Radiation belt; Van Allen Probes

2015

Electron scattering by magnetosonic waves in the inner magnetosphere

We investigate the importance of electron scattering by magnetosonic waves in the Earth\textquoterights inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements, and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of the lower hybrid resonance frequency, but this trend is not observed inside the plasmasphere. Drift and bounce averaged electron diffusion rates due to magnetosonic waves are calculated using a recently developed analytical formula. The resulting time scale of electron energization during disturbed conditions (when AE* > 300 nT) is more than ten days. We perform a 2D simulation of the electron phase space density evolution due to magnetosonic wave scattering during disturbed conditions. Outside the plasmapause, the waves accelerate electrons with pitch angles between 50\textdegree and 70\textdegree, and form butterfly pitch angle distributions at energies from ~100 keV to a few MeV over a time scale of several days; whereas inside the plasmapause, the electron acceleration is very weak. Our study suggests that intense magnetosonic waves may cause the butterfly distribution of radiation belt electrons especially outside the plasmapause, but electron acceleration due to magnetosonic waves is generally not as effective as chorus wave acceleration.

Ma, Qianli; Li, Wen; Thorne, Richard; Bortnik, Jacob; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2015

YEAR: 2015     DOI: 10.1002/2015JA021992

Electron scattering; magnetosonic waves; Van Allen Probes; Van Allen Probes statistics

Local time distributions of repetition periods for rising tone lower band chorus waves in the magnetosphere

Whistler mode chorus waves generally occur outside the plasmapause in the magnetosphere. The most striking feature of the waves is their occurrence in discrete elements. One of the parameters that describe the discrete elements is the repetition period (Trp), the time between consecutive elements. The Trp has not been studied statistically before. We use high-resolution waveform data to derive distributions of Trp for different local times. We find that the average Trp for the nightside (0.56 s) and dawnside (0.53 s) are smaller than those for the dayside (0.81 s) and duskside (0.97 s). Through a comparison with the background plasma and magnetic fields, we also find that the total magnetic field and temperature are the main controlling factors that affect the variability of Trp. These results are important for understanding the generation mechanism of chorus and choosing parameters in simulations that model the acceleration and loss of electrons by wave-particle interactions.

Shue, Jih-Hong; Hsieh, Yi-Kai; W. Y. Tam, Sunny; Wang, Kaiti; Fu, Hui; Bortnik, Jacob; Tao, Xin; Hsieh, Wen-Chieh; Pi, Gilbert;

Published by: Geophysical Research Letters      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015GL066107

Chorus; local time distribution; repetition period

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations

Plasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth\textquoterights radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmaspheric hiss wave intensity. The technique is validated by analyzing the conjunctions between the POES spacecraft and the Van Allen Probes from September 2012 to June 2014. The technique performs well for moderate-to-strong hiss activity (>=30 pT) with sufficiently high electron fluxes. The main source of these limitations is the number of counts of energetic electrons measured by the POES spacecraft capable of resonating with hiss waves. For moderate-to-strong hiss events, the results show that the wave amplitudes from the EMFISIS instruments onboard the Van Allen Probes are well reproduced by the POES technique, which provides more consistent estimates than the parameterized statistical hiss wave model based on CRRES data.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/2015JA021148

Plasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1\textendash4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave-induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi-parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+-band EMIC wave scattering rates at pitch angles < ~40\textdegree for electrons > ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from <1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90\textdegree remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to \textquotedbllefttop-hat.\textquotedblright Overall, H+-band and He+-band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1\textendash2 MeV. In contrast, the presence of O+-band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5\textendash10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics.

Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021466

electron loss time scales; EMIC waves; outer radiation belt; relativistic electrons; resonant wave-particle interactions

Solar wind conditions leading to efficient radiation belt electron acceleration: A superposed epoch analysis

Determining preferential solar wind conditions leading to efficient radiation belt electron acceleration is crucial for predicting radiation belt electron dynamics. Using Van Allen Probes electron observations (>1 MeV) from 2012 to 2015, we identify a number of efficient and inefficient acceleration events separately to perform a superposed epoch analysis of the corresponding solar wind parameters and geomagnetic indices. By directly comparing efficient and inefficient acceleration events, we clearly show that prolonged southward Bz, high solar wind speed, and low dynamic pressure are critical for electron acceleration to >1 MeV energies in the heart of the outer radiation belt. We also evaluate chorus wave evolution using the superposed epoch analysis for the identified efficient and inefficient acceleration events and find that chorus wave intensity is much stronger and lasts longer during efficient electron acceleration events, supporting the scenario that chorus waves play a key role in MeV electron acceleration.

Li, W.; Thorne, R.; Bortnik, J.; Baker, D.; Reeves, G.; Kanekal, S.; Spence, H.; Green, J.;

Published by: Geophysical Research Letters      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015GL065342

Chorus wave; Electron acceleration; solar wind conditions; Van Allen Probes

Nonlinear Bounce Resonances between Magnetosonic Waves and Equatorially Mirroring Electrons

Equatorially mirroring energetic electrons pose an interesting scientific problem, since they generally cannot resonate with any known plasma waves and hence cannot be scattered down to lower pitch angles. Observationally it is well known that the fluxof these equatorial particles does not simply continue to build up indefinitely, and so a mechanism must necessarily exist that transports these particles from a equatorial pitch angle of 90 degrees down to lower values. However this mechanism has not been uniquely identified yet. Here, we investigate the mechanism of bounce resonance with equatorial noise (or fast magnetosonic waves). A test particle simulation is used to examine the effects of monochromatic magnetosonic waves on the equatorially mirroring energetic electrons, with a special interest in characterizing the effectiveness of bounce resonances. Our analysis shows that bounce resonances can occur at the first three harmonics of the bounce frequency (nωb, n = 1 , 2, and 3 ) and can effectively reduce the equatorial pitch angle to values where resonant scattering by whistler-mode waves becomes possible. We demonstrate that the nature of bounce resonance is nonlinear and we propose a nonlinear oscillation model for characterizing bounce resonances using two key parameters, effective wave amplitude \~A and normalized wave number inline image. The threshold for higher harmonic resonance is more strict, favoring higher \~A and inline image and the change in equatorial pitch angle is strongly controlled by inline image. We also investigate the dependence of bounce resonance effects on various physical parameters, including wave amplitude, frequency, wave normal angle and initial phase, plasmadensity, and electron energy. It is found that the effect of bounce resonance is sensitive to the wave normal angle. We suggest that the bounce resonant interaction might lead to an observed pitch angle distribution with a minimum at 90o.

Chen, Lunjin; Maldonado, Armando; Bortnik, Jacob; Thorne, Richard; Li, Jinxing; Dai, Lei; Zhan, Xiaoya;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2015

YEAR: 2015     DOI: 10.1002/2015JA021174

bounce resonance; equatorioal noise; magnetosonic waves; nonlinear; Radiation belt; wave particle interaction

Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their Effects on radiation belt electron dynamics

Plasmaspheric hiss is known to play an important role in controlling the overall structure and dynamics of radiation belt electrons inside the plasmasphere. Using newly available Van Allen Probes wave data, which provide excellent coverage in the entire inner magnetosphere, we evaluate the global distribution of the hiss wave frequency spectrum and wave intensity for different levels of substorm activity. Our statistical results show that observed hiss peak frequencies are generally lower than the commonly adopted value (~550 Hz), which was in frequent use, and that the hiss wave power frequently extends below 100 Hz, particularly at larger L shells (> ~3) on the dayside during enhanced levels of substorm activity. We also compare electron pitch angle scattering rates caused by hiss using the new statistical frequency spectrum and the previously adopted Gaussian spectrum and find that the differences are up to a factor of ~5 and are dependent on energy and L shell. Moreover, the new statistical hiss wave frequency spectrum including wave power below 100 Hz leads to increased pitch angle scattering rates by a factor of ~1.5 for electrons above ~100 keV at L~5, although their effect is negligible at L <= 3. Consequently, we suggest that the new realistic hiss wave frequency spectrum should be incorporated into future modeling of radiation belt electron dynamics.

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Nishimura, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021048

hiss diffusion coefficient; hiss frequency spectrum; Plasmaspheric Hiss; Van Allen Probes

Variability of the pitch angle distribution of radiation belt ultra-relativistic electrons during and following intense geomagnetic storms: Van Allen Probes observations

Fifteen months of pitch angle resolved Van Allen Probes REPT measurements of differential electron flux are analyzed to investigate the characteristic variability of the pitch angle distribution (PAD) of radiation belt ultra-relativistic (>2 MeV) electrons during storm conditions and during the long-term post-storm decay. By modeling the ultra-relativistic electron pitch angle distribution as sinn α, where α is the equatorial pitch angle, we examine the spatio-temporal variations of the n-value. The results show that in general n-values increase with the level of geomagnetic activity. In principle, ultra-relativistic electrons respond to geomagnetic storms by becoming more peaked at 90\textdegree pitch angle with n-values of 2\textendash3 as a supportive signature of chorus acceleration outside the plasmasphere. High n-values also exist inside the plasmasphere, being localized adjacent to the plasmapause and exhibiting energy dependence, which suggests a significant contribution from EMIC waves scattering. During quiet periods, n-values generally evolve to become small, i.e., 0\textendash1. The slow and long-term decays of the ultra-relativistic electrons after geomagnetic storms, while prominent, produce energy and L-shell dependent decay timescales in association with the solar and geomagnetic activity and wave-particle interaction processes. At lower L shells inside the plasmasphere, the decay timescales τd for electrons at REPT energies are generally larger, varying from tens of days to hundreds of days, which can be mainly attributed to the combined effect of hiss induced pitch angle scattering and inward radial diffusion. As L shell increases to L ~ 3.5, a narrow region exists (with a width of ~0.5 L) where the observed ultra-relativistic electrons decay fastest, possibly resulting from efficient EMIC wave scattering. As L shell continues to increase, τd generally becomes larger again, indicating an overall slower loss process by waves at high L shells. Our investigation based upon the sinn α function fitting and the estimate of decay timescale offers a convenient and useful means to evaluate the underlying physical processes that play a role in driving the acceleration and loss of ultra-relativistic electrons and to assess their relative contributions.

Ni, Binbin; Zou, Zhengyang; Gu, Xudong; Zhou, Chen; Thorne, Richard; Bortnik, Jacob; Shi, Run; Zhao, Zhengyu; Baker, Daniel; Kanekal, Shrikhanth; Spence, Harlan; Reeves, Geoffrey; Li, Xinlin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2015JA021065

adiation belt ultra-relativistic electrons; decay timescales; Geomagnetic storms; Pitch angle distribution; resonant wave-particle interactions; Van Allen Probes

Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Technique sensitivity analysis

A novel technique capable of inferring wave amplitudes from low-altitude electron measurements from the POES spacecraft has been previously proposed to construct a global dynamic model of chorus and plasmaspheric hiss waves. In this paper we focus on plasmaspheric hiss, which is an incoherent broadband emission that plays a dominant role in the loss of energetic electrons from the inner magnetosphere. We analyze the sensitivity of the POES technique to different inputs used to infer the hiss wave amplitudes during three conjunction events with the Van Allen Probes. These amplitudes are calculated with different input models of the plasma density, wave frequency spectrum, and electron energy spectrum, and the results are compared to the wave observations from the twin Van Allen Probes. Only one parameter is varied at a time in order to isolate its effect on the output, while the two other inputs are set to the values observed by the Van Allen Probes. The results show that the predicted hiss amplitudes are most sensitive to the adopted frequency spectrum, followed by the plasma density, but they are not very sensitive to the electron energy spectrum. Moreover, the standard Gaussian representation of the wave frequency spectrum (centered at 550 Hz) peaks at frequencies that are much higher than those observed in individual cases as well as in statistical wave distributions, which produces large overestimates of the hiss wave amplitude. For this reason, a realistic statistical model of the wave frequency spectrum should be used in the POES technique to infer the plasmaspheric hiss wave intensity rather than a standard Gaussian distribution, since the former better reproduces the observed plasmaspheric hiss wave amplitudes.

de Soria-Santacruz, M.; Li, W.; Thorne, R.; Ma, Q.; Bortnik, J.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.D.; Blake, J.; Fennell, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2015

YEAR: 2015     DOI: 10.1002/2014JA020941

Plasmaspheric Hiss; POES technique; Van Allen Probes; Waves global model

First Evidence for Chorus at a Large Geocentric Distance as a Source of Plasmaspheric Hiss: Coordinated THEMIS and Van Allen Probes Observation

Recent ray tracing suggests that plasmaspheric hiss can originate from chorus observed outside of the plasmapause. Although a few individual events have been reported to support this mechanism, the number of reported conjugate events is still very limited. Using coordinated observations between THEMIS and Van Allen Probes, we report on an interesting event, where chorus was observed at a large L-shell (~9.8), different from previously reported events at L < 6, but still exhibited a remarkable correlation with hiss observed in the outer plasmasphere (L ~ 5.5). Ray tracing indicates that a subset of chorus can propagate into the observed location of hiss on a timescale of ~ 5-6 s, in excellent agreement with the observed time lag between chorus and hiss. This provides quantitative support that chorus from large L-shells, where it was previously considered unable to propagate into the plasmasphere, can in fact be the source of hiss.

Li, W.; Chen, L.; Bortnik, J.; Thorne, R.; Angelopoulos, V.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 01/2015

YEAR: 2015     DOI: 10.1002/2014GL062832

Chorus; hiss; wave propagation; Van Allen Probes

2014

Evolution of relativistic outer belt electrons during an extended quiescent period

To effectively study steady loss due to hiss-driven precipitation of relativistic electrons in the outer radiation belt, it is useful to isolate this loss by studying a time of relatively quiet geomagnetic activity. We present a case of initial enhancement and slow, steady decay of 700 keV - 2 MeV electron populations in the outer radiation belt during an extended quiescent period from ~15 December 2012 - 13 January 2013. We incorporate particle measurements from a constellation of satellites, including the Colorado Student Space Weather Experiment (CSSWE) CubeSat, the Van Allen Probes twin spacecraft, and THEMIS, to understand the evolution of the electron populations across pitch angle and energy. Additional data from calculated phase space density (PSD), as well as hiss and chorus wave data from Van Allen Probes, helps complete the picture of the slow precipitation loss of relativistic electrons during a quiet time. Electron loss to the atmosphere during this event is quantified through use of the Loss Index Method, utilizing CSSWE measurements at LEO. By comparing these results against equatorial Van Allen Probes electron flux data, we conclude the net precipitation loss of the outer radiation belt content to be greater than 92\%, suggesting no significant acceleration during this period, and resulting in faster electron loss rates than have previously been reported.

Jaynes, A.; Li, X.; Schiller, Q.; Blum, L.; Tu, W.; Turner, D.; Ni, B.; Bortnik, J.; Baker, D.; Kanekal, S.; Blake, J.; Wygant, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2014

YEAR: 2014     DOI: 10.1002/2014JA020125

electron lifetime; hiss waves; pitch angle scattering; precipitation loss; Radiation belts; Van Allen Probes

Initial Measurements of O-ion and He-ion Decay Rates Observed from the Van Allen Probes RBSPICE Instrument

H-ion (~45-keV to ~600-keV), He-ion (~65-keV to ~520-keV), and O-ion (~140-keV to ~1130-keV) integral flux measurements, from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft B, are reported. These abundance data form a cohesive picture of ring current ions during the first nine months of measurements. Furthermore, the data presented herein are used to show injection characteristics via the He-ion/H-ion abundance ratio and the O-ion/H-ion abundance ratio. Of unique interest to ring current dynamics are the spatial-temporal decay characteristics of the two injected populations. We observe that He-ions decay more quickly at lower L-shells, on the orderof ~0.8-day at L-shells of 3\textendash4, and decay more slowly with higher L-shell, on the order of ~1.7-days at L-shells of 5\textendash6. Conversely, O-ions decay very rapidly (~1.5-hours) across all L-shells. The He-ion decay time are consistent with previously measured and calculated lifetimes associated with charge exchange. The O-ion decay time is much faster than predicted and is attributed to the inclusion of higher energy (>500-keV) O-ions in our decay rate estimation. We note that these measurements demonstrate a compelling need for calculation of high energy O-ion loss rates, which have not been adequately studied in the literature to date.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob; Keika, Kunihiro;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020374

inner magnetosphere; ion decay rates; Spacecraft measurements; Van Allen Probes

Statistical results describing the bandwidth and coherence coefficient of whistler mode waves using THEMIS waveform data

The bandwidths and coherence coefficients of lower band whistler mode waves are analyzed using Time History of Events and Macroscale Interactions during Substorms (THEMIS) waveform data for rising tones, falling tones, and hiss-like emissions separately. We also evaluate their dependences on the spatial location, electron density, the ratio of plasma frequency to local electron gyrofrequency (fpe/fce), and the wave amplitude. Our results show that the bandwidth normalized by the local electron gyrofrequency (fce) of rising and falling tones is very narrow (~0.01 fce), smaller than that of the hiss-like emissions (~0.025 fce). Meanwhile, the normalized bandwidth of discrete emissions gradually decreases with increasing wave amplitude, whereas that of hiss-like emissions increases slowly. The coherence coefficient of rising and falling tones is extremely large (~1), while the coherence coefficient of hiss-like emissions is smaller but is still larger than 0.5. For all categories of whistler mode waves, the normalized bandwidth increases at larger L shells. Furthermore, the normalized bandwidth is positively correlated with local fpe/fce but is inversely correlated with the electron density. Interactions between radiation belt electrons and whistler mode waves have been widely described by quasi-linear diffusion theory. Our results suggest that although quasi-linear theory is not entirely applicable for modeling electron interactions with rising and falling tones due to their narrow bandwidth and high coherence coefficient, it is suitable to treat wave-particle interactions between electrons and low-amplitude hiss-like emissions. Moreover, the correlations between the normalized bandwidth of chorus waves (especially the discrete emissions) and other parameters may provide insights for the generation mechanism of chorus waves.

Gao, X.; Li, W.; Thorne, R.; Bortnik, J.; Angelopoulos, V.; Lu, Q.; Tao, X.; Wang, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2014

YEAR: 2014     DOI: 10.1002/2014JA020158

bandwidth; coherence coefficient; nonlinear; quasi-linear; THEMIS; whistler mode waves

Calculation of whistler-mode wave intensity using energetic electron precipitation

The energetic electron population measured by multiple low-altitude POES satellites is used to infer whistlermode wave amplitudes using a physics-based inversion technique. We validate this technique by quantitatively analyzing a conjunction event between the Van Allen Probes and POES, and find that the inferred hiss wave amplitudes from POES electron measurements agree remarkably well with directly measured hiss waves amplitudes. We also use this technique to construct the global distribution of chorus wave intensity with extensive coverage over a broad L-MLT region during the 8\textendash9 October 2012 storm and demonstrate that the inferred chorus wave amplitudes agree well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The evolution of the whistler-mode wave intensity inferred from low-altitude electron measurements can provide real-time global estimates of the wave intensity, which cannot be obtained from in-situ wave measurements by equatorial satellites alone, but are crucial in quantifying radiation belt electron dynamics.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929965

Electron traps; Energy measurement; Plasma measurements; Van Allen Probes

Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves

Wave normal distributions of lower-band whistler-mode waves observed outside the plasmapause exhibit two peaks; one near the parallel direction and the other at very oblique angles. We analyze a number of conjunction events between the Van Allen Probes near the equatorial plane and POES satellites at conjugate low altitudes, where lower-band whistler-mode wave amplitudes were inferred from the two-directional POES electron measurements over 30\textendash100 keV, assuming that these waves were quasi-parallel. For conjunction events, the wave amplitudes inferred from the POES electron measurements were found to be overestimated as compared with the Van Allen Probes measurements primarily for oblique waves and quasi-parallel waves with small wave amplitudes (< ~20 pT) measured at low latitudes. This provides plausible experimental evidence of stronger pitch-angle scattering loss caused by oblique waves than by quasi-parallel waves with the same magnetic wave amplitudes, as predicted by numerical calculations.

Li, W.; Mourenas, D.; Artemyev, A.; Agapitov, O.; Bortnik, J.; Albert, J.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL061260

chorus waves; electron precipitation; oblique whistler; pitch angle scattering

Generation of Unusually Low Frequency Plasmaspheric Hiss

It has been reported from Van Allen Probe observations that plasmaspheric hiss intensification in the outer plasmasphere, associated with a substorm injection on Sept 30 2012, occurred with a peak frequency near 100 Hz, well below the typical plasmaspheric hiss frequency range, extending down to ~20 Hz. We examine this event of unusually low frequency plasmaspheric hiss to understand its generation mechanism. Quantitative analysis is performed by simulating wave ray paths via the HOTRAY ray tracing code with measured plasma density and calculating ray path-integrated wave gain evaluated using the measured energetic electron distribution. We demonstrate that the growth rate due to substorm injected electrons is positive but rather weak, leading to small wave gain (~10 dB) during a single equatorial crossing. Propagation characteristics aided by the sharp density gradient associated with the plasmapause, however, can enable these low frequency waves to undergo cyclic ray paths, which return to the unstable region leading to repeated amplification to yield sufficient net wave gain (>40 dB) to allow waves to grow from the thermal noise.

Chen, Lunjin; Thorne, Richard; Bortnik, Jacob; Li, Wen; Horne, Richard; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.;

Published by: Geophysical Research Letters      Published on: 08/2014

YEAR: 2014     DOI: 10.1002/2014GL060628

Chorus; Generation; Plasmaspheric Hiss; Ray Tracing; Van Allen Probes

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is suggested to be fundamentally important for accelerating seed electron population to ultra-relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when Van Allen Probes observed very rapid electron acceleration up to multi MeV within \~15 hours. A clear peak in electron phase space density observed at L* \~ 4 indicates that the internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements by multiple POES satellites over a broad L-MLT region, which is used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement with the observed electron PSD near its peak in timing, energy dependence, and pitch angle distribution, but other loss processes and radial diffusion may be required to explain the differences in observation and simulation at other locations away from the PSD peak. Our simulation results suggest that local acceleration by chorus waves is likely to be a robust and repetitive process and plays a critical role in accelerating radiation belt electrons from injected convective energies (\~ 100 keV) to ultra-relativistic energies (multi MeV).

Thorne, R.; Li, W.; Ma, Q.; Ni, B.; Bortnik, J.;

Published by:       Published on: 08/2014

YEAR: 2014     DOI: 10.1109/URSIGASS.2014.6929882

Atmospheric waves; Van Allen Belts; Van Allen Probes

Evolution of nightside subauroral proton aurora caused by transient plasma sheet flows

While nightside subauroral proton aurora shows rapid temporal variations, the cause of this variability has rarely been investigated. Using well-coordinated observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) all-sky imagers, THEMIS satellites in the equatorial magnetosphere, and the low-altitude NOAA 17 satellite, we examined the rapid temporal evolution of subauroral proton aurora in the premidnight sector. An isolated proton aurora occurred soon after an auroral poleward boundary intensification that was followed by an auroral streamer reaching the equatorward boundary of the auroral oval. Three THEMIS satellites in the magnetotail detected flow bursts and one of the THEMIS satellites in the outer plasmasphere observed a ring current injection together with electromagnetic ion cyclotron wave intensifications. Proton auroral brightenings occurred multiple times throughout the storm main phase and a majority of those were correlated with auroral streamers reaching the auroral equatorward boundary. This sequence highlights the important role of transient flow bursts and particle injections for plasma transport into the inner magnetosphere and thus reflects a tail-inner magnetospheric interaction process in which transient flow bursts play an important role in injecting ring current ions into the plasmasphere, causing rapid modulation of precipitation and the resultant subauroral proton aurora.

Nishimura, Y.; Bortnik, J.; Li, W.; Lyons, L.; Donovan, E.; Angelopoulos, V.; Mende, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/2014JA020029

EMIC waves; plasma sheet flow burst; plasmasphere; proton aurora; THEMIS ASI; THEMIS satellite

A novel technique to construct the global distribution of whistler mode chorus wave intensity using low-altitude POES electron data

Although magnetospheric chorus plays a significant role in the acceleration and loss of radiation belt electrons, its global evolution during any specific time period cannot be directly obtained by spacecraft measurements. Using the low-altitude NOAA Polar-orbiting Operational Environmental Satellite (POES) electron data, we develop a novel physics-based methodology to infer the chorus wave intensity and construct its global distribution with a time resolution of less than an hour. We describe in detail how to apply the technique to satellite data by performing two representative analyses, i.e., (i) for one specific time point to visualize the estimation procedure and (ii) for a particular time period to validate the method and construct an illustrative global chorus wave model. We demonstrate that the spatiotemporal evolution of chorus intensity in the equatorial magnetosphere can be reasonably estimated from electron flux measurements made by multiple low-altitude POES satellites with a broad coverage of L shell and magnetic local time. Such a data-based, dynamic model of chorus waves can provide near-real-time wave information on a global scale for any time period where POES electron data are available. A combination of the chorus wave spatiotemporal distribution acquired using this methodology and the direct spaceborne wave measurements can be used to evaluate the quantitative scattering caused by resonant wave-particle interactions and thus model radiation belt electron variability.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Green, Janet; Kletzing, Craig; Kurth, William; Hospodarsky, George; Pich, Maria;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.710.1002/2014JA019935

electron precipitation; global wave distribution; magnetospheric chorus; physics-based technique; wave resonant scattering

Radiation belt electron acceleration by chorus waves during the 17 March 2013 storm

Local acceleration driven by whistler-mode chorus waves is fundamentally important for accelerating seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes observed very rapid electron acceleration up to several MeV within ~12 hours. A clear radial peak in electron phase space density (PSD) observed near L* ~4 indicates that an internal local acceleration process was operating. We construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable agreement in magnitude, timing, energy dependence, and pitch angle distribution with the observed electron PSD near its peak location. However, radial diffusion and other loss processes may be required to explain the differences between the observation and simulation at other locations away from the PSD peak. Our simulation results, together with previous studies, suggest that local acceleration by chorus waves is a robust and ubiquitous process and plays a critical role in accelerating injected seed electrons with convective energies (~100 keV) to highly relativistic energies (several MeV).

Li, W.; Thorne, R.; Ma, Q.; Ni, B.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Kanekal, S.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 06/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.610.1002/2014JA019945

Van Allen Probes

Competing source and loss mechanisms due to wave-particle interactions in Earth\textquoterights outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm

Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase dropout exhibited enhanced losses to the atmosphere at L* < 4, where the phase space density (PSD) of multi-MeV electrons dropped by over an order of magnitude in <4 h. Based on POES observations of precipitating >1 MeV electrons and energetic protons, SAMPEX >1 MeV electrons, and ground observations of band-limited Pc1-2 wave activity, we show that this sudden loss was consistent with pitch angle scattering by electromagnetic ion cyclotron waves in the dusk magnetic local time sector at 3 < L* < 4. At 4 < L* < 5, local acceleration was also active during the main and early recovery phases, when growing peaks in electron PSD were observed by both Van Allen Probes and THEMIS. This acceleration corresponded to the period when IMF Bz was southward, the AE index was >300 nT, and energetic electron injections and whistler-mode chorus waves were observed throughout the inner magnetosphere for >12 h. After this period, Bz turned northward, and injections, chorus activity, and enhancements in PSD ceased. Overall, the outer belt was depleted by this storm. From the unprecedented level of observations available, we show direct evidence of the competitive nature of different wave-particle interactions controlling relativistic electron fluxes in the outer radiation belt.

Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/jgra.v119.310.1002/2014JA019770

Van Allen Probes

Resonant scattering of energetic electrons by unusual low-frequency hiss

We quantify the resonant scattering effects of the unusual low-frequency dawnside plasmaspheric hiss observed on 30 September 2012 by the Van Allen Probes. In contrast to normal (~100\textendash2000 Hz) hiss emissions, this unusual hiss event contained most of its wave power at ~20\textendash200 Hz. Compared to the scattering by normal hiss, the unusual hiss scattering speeds up the loss of ~50\textendash200 keV electrons and produces more pronounced pancake distributions of ~50\textendash100 keV electrons. It is demonstrated that such unusual low-frequency hiss, even with a duration of a couple of hours, plays a particularly important role in the decay and loss process of energetic electrons, resulting in shorter electron lifetimes for ~50\textendash400 keV electrons than normal hiss, and should be carefully incorporated into global modeling of radiation belt electron dynamics during periods of intense injections.

Ni, Binbin; Li, Wen; Thorne, Richard; Bortnik, Jacob; Ma, Qianli; Chen, Lunjin; Kletzing, Craig; Kurth, William; Hospodarsky, George; Reeves, Geoffrey; Spence, Harlan; Blake, Bernard; Fennell, Joseph; Claudepierre, Seth;

Published by: Geophysical Research Letters      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2014GL059389

Van Allen Probes

Quantifying hiss-driven energetic electron precipitation: A detailed conjunction event analysis

We analyze a conjunction event between the Van Allen Probes and the low-altitude Polar Orbiting Environmental Satellite (POES) to quantify hiss-driven energetic electron precipitation. A physics-based technique based on quasi-linear diffusion theory is used to estimate the ratio of precipitated and trapped electron fluxes (R), which could be measured by the two-directional POES particle detectors, using wave and plasma parameters observed by the Van Allen Probes. The remarkable agreement between modeling and observations suggests that this technique is applicable for quantifying hiss-driven electron scattering near the bounce loss cone. More importantly, R in the 100\textendash300 keV energy channel measured by multiple POES satellites over a broad L magnetic local time region can potentially provide the spatiotemporal evolution of global hiss wave intensity, which is essential in evaluating radiation belt electron dynamics, but cannot be obtained by in situ equatorial satellites alone.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Nishimura, Y.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Gu, X.;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059132

Van Allen Probes

Quiet time observations of He ions in the inner magnetosphere as observed from the RBSPICE instrument aboard the Van Allen Probes mission

He ions contribute to Earth\textquoterights ring current energy and species population density and are important in understanding ion transport and charge exchange processes in the inner magnetosphere. He ion flux measurements made by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument are presented in this paper. Particular focus is centered on geomagnetically quiet intervals in late 2012 and 2013 that show the flux, L-shell, and energy (65 keV to 518 keV) morphology of ring current He ions between geomagnetic storm injection events. The overall He ion abundance during the first nine months of RBSPICE observations, the appearance of a persistent high energy, low L-shell He ion population, and the temporal evolution of this population all provide new insights into trapped ring current energy He ions. These data provide a unique resource that will be used to provide verifications of, and improvements to, models of He ion transport and loss in Earth\textquoterights ring current region.

Gerrard, Andrew; Lanzerotti, Louis; Gkioulidou, Matina; Mitchell, Donald; Manweiler, Jerry; Bortnik, Jacob;

Published by: Geophysical Research Letters      Published on: 02/2014

YEAR: 2014     DOI: 10.1002/2013GL059175

Van Allen Probes

2013

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus

Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emission known as chorus could be a potential candidate for local electron acceleration6, 7, 8, 9, 10, but a definitive resolution of the importance of chorus for radiation-belt acceleration was not possible because of limitations in the energy range and resolution of previous electron observations and the lack of a dynamic global wave model. Here we report high-resolution electron observations11 obtained during the 9 October storm and demonstrate, using a two-dimensional simulation performed with a recently developed time-varying data-driven model12, that chorus scattering explains the temporal evolution of both the energy and angular distribution of the observed relativistic electron flux increase. Our detailed modelling demonstrates the remarkable efficiency of wave acceleration in the Earth\textquoterights outer radiation belt, and the results presented have potential application to Jupiter, Saturn and other magnetized astrophysical objects.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.;

Published by: Nature      Published on: 12/2013

YEAR: 2013     DOI: 10.1038/nature12889

RBSP; Van Allen Probes

Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss

We perform a comprehensive analysis to evaluate hiss-induced scattering effect on the pitch angle evolution and associated decay processes of relativistic electrons. The results show that scattering by the equatorial, highly oblique hiss component is negligible. Quasi-parallel approximation is good for evaluation of hiss-driven electron scattering rates <= 2 MeV. However, realistic wave propagation angles as a function of latitude must be considered to accurately quantify hiss scattering rates above 2 MeV, and ambient plasma density is also a critical parameter. While the first-order cyclotron and the Landau resonances are dominant for hiss scattering < 2 MeV electrons, higher-order resonances become important and even dominant at intermediate pitch angles for ultrarelativistic (>= 3 MeV) electrons. Hiss-induced electron pitch angle evolution shows an initially rapid transport from high to lower pitch angles, with a gradual approach toward equilibrium, and a final exponential decay as a whole. Although hiss scattering rates near the loss cone control the pitch angle evolution and the ultimate loss of ultrarelativistic electrons, the scattering bottleneck significantly affects the loss rate and leads to characteristic top hat-shaped pitch angle distributions at energies < 1 MeV. Decay timescales are on the order of a few days, tens of days, and > 100 days for 500 keV, 2 MeV, and 5 MeV electrons, respectively, consistent with recent observations from the Van Allen Probes and indicating that scattering by hiss can realistically account for the long-term loss process and the pitch angle evolution of relativistic electrons in the plasmasphere following storm time injections.

Ni, Binbin; Bortnik, Jacob; Thorne, Richard; Ma, Qianli; Chen, Lunjin;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2013

YEAR: 2013     DOI: 10.1002/2013JA019260

Van Allen Probes

Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes

We adopt a physics-based technique to infer chorus wave amplitudes from the low-altitude electron population (30\textendash100 keV) measured by multiple Polar Orbiting Environmental Satellites (POES), which provide extensive coverage over a broad region in L-shell and magnetic local time (MLT). This technique is validated by analyzing conjunction events between the Van Allen Probes measuring chorus wave amplitudes near the equator and POES satellites measuring the 30\textendash100 keV electron population at the conjugate low altitudes. We apply this technique to construct the chorus wave distributions during the 8\textendash9 October storm in 2012 and demonstrate that the inferred chorus wave amplitudes agree reasonably well with conjugate measurements of chorus wave amplitudes from the Van Allen Probes. The evolution of the chorus wave intensity inferred from low-altitude electron measurements can provide real-time global estimates of the chorus wave intensity, which cannot be obtained from in situ chorus wave measurements by equatorial satellites alone, but is crucial in quantifying radiation belt electron dynamics.

Li, W.; Ni, B.; Thorne, R.; Bortnik, J.; Green, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 09/2013

YEAR: 2013     DOI: 10.1002/grl.v40.1710.1002/grl.50920

Van Allen Probes

An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons

Both plasmaspheric hiss and chorus waves were observed simultaneously by the two Van Allen Probes in association with substorm-injected energetic electrons. Probe A, located inside the plasmasphere in the postdawn sector, observed intense plasmaspheric hiss, whereas Probe B observed chorus waves outside the plasmasphere just before dawn. Dispersed injections of energetic electrons were observed in the dayside outer plasmasphere associated with significant intensification of plasmaspheric hiss at frequencies down to ~20 Hz, much lower than typical hiss wave frequencies of 100\textendash2000 Hz. In the outer plasmasphere, the upper energy of injected electrons agrees well with the minimum cyclotron resonant energy calculated for the lower cutoff frequency of the observed hiss, and computed convective linear growth rates indicate instability at the observed low frequencies. This suggests that the unusual low-frequency plasmaspheric hiss is likely to be amplified in the outer plasmasphere due to the injected energetic electrons.

Li, W.; Thorne, R.; Bortnik, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Blake, J.; Fennell, J.; Claudepierre, S.; Wygant, J.; Thaller, S.;

Published by: Geophysical Research Letters      Published on: 08/2013

YEAR: 2013     DOI: 10.1002/grl.50787

Van Allen Probes

Evolution and slow decay of an unusual narrow ring of relativistic electrons near L ~ 3.2 following the September 2012 magnetic storm

A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magnetic storm on 1 October. This long-term stability of the relativistic electron ring was associated with the rapid outward migration and maintenance of the plasmapause to distances greater than L = 4. The remnant ring was thus immune from the dynamic process, which caused rapid rebuilding of the outer radiation belt at L > 4, and was only subject to slow decay due to pitch angle scattering by plasmaspheric hiss on timescales exceeding 10\textendash20 days for electron energies above 3 MeV. At lower energies, the decay is much more rapid, consistent with the absence of a long-duration electron ring at energies below 2 MeV.

Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.;

Published by: Geophysical Research Letters      Published on: 06/2013

YEAR: 2013     DOI: 10.1002/grl.50627

RBSP; Van Allen Probes

A novel technique for rapid L* calculation: algorithm and implementation

Computing the magnetic drift invariant, L*, rapidly and accurately has always been a challenge to magnetospheric modelers, especially given the im- portance of this quantity in the radiation belt community. Min et al. (2013) proposed a new method of calculating L* using the principle of energy con- servation. Continuing with the approach outlined therein, the present pa- per focuses on the technical details of the algorithm to outline the implemen- tation, systematic analysis of accuracy, and verification of the speed of the new method. We also show new improvements which enable near real-time computation of L*. The relative error is on the order of 10-3 when \~ 0.1 RE grid resolution is used and the calculation speed is about two seconds per particle in the popular Tsyganenko and Sitnov 05 model (TS05). Based on the application examples, we suggest that this method could be an added resource for the radiation belt community.

Min, Kyungguk; Bortnik, J.; Lee, Jeongwoo;

Published by: Journal of Geophysical Research      Published on: 05/2013

YEAR: 2013     DOI: 10.1002/jgra.50250

calculating L*; rapid L* calculation; RBSP; Van Allen Probes

A novel technique for rapid L* calculation using UBK coordinates

[1] The magnetic drift invariant (L*) is an important quantity used for tracking and organizing particle dynamics in the radiation belts, but its accurate calculation has been computationally expensive in the past, thus making it difficult to employ this quantity in real-time space weather applications. In this paper, we propose a new, efficient method to calculate L* using the principle of energy conservation. This method uses Whipple\textquoterights (U, B, K) coordinates to quickly and accurately determine trajectories of particles at the magnetic mirror point from two-dimensional isoenergy contours. The method works for any magnetic field configuration and is able to accommodate constant electric potential along field lines. We compare the result of this method with those of International Radiation Belt Environment Modeling library (IRBEM-LIB) to demonstrate the performance of this new method. The method requires a preparation step, and thus may not be the optimal method for a single trajectory calculation; however, it presents a huge performance gain when adiabatically propagating a large population of particles in a given magnetic field configuration.

Min, Kyungguk; Bortnik, J.; Lee, Jeongwoo;

Published by: Journal of Geophysical Research      Published on: 01/2013

YEAR: 2013     DOI: 10.1029/2012JA018177

Generalized L value; L star; RBSP; Van Allen Probes

2006

Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event

The relativistic electron dropout event on 20 November 2003 is studied using data from a number of satellites including SAMPEX, HEO, ACE, POES, and FAST. The observations suggest that the dropout may have been caused by two separate mechanisms that operate at high and low L-shells, respectively, with a separation at L \~ 5. At high L-shells (L > 5), the dropout is approximately independent of energy and consistent with losses to the magnetopause aided by the Dst effect and outward radial diffusion which can deplete relativistic electrons down to lower L-shells. At low L-shells (L < 5), the dropout is strongly energy-dependent, with the higher-energy electrons being affected most. Moreover, large precipitation bands of both relativistic electrons and energetic protons are observed at low L-shells which are consistent with intense pitch angle scattering driven by electromagnetic ion cyclotron (EMIC) waves and may result in a rapid loss of relativistic electrons near the plasmapause in the dusk sector or in plumes of enhanced density.

Bortnik, J.; Thorne, R.; O\textquoterightBrien, T.; Green, J.; Strangeway, R.; Shprits, Y; Baker, D.;

Published by: Journal of Geophysical Research      Published on: 12/2006

YEAR: 2006     DOI: 10.1029/2006JA011802

Local Loss due to VLF/ELF/EMIC Waves



  1      2