Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 506 entries in the Bibliography.


Showing entries from 101 through 150


2019

Earth\textquoterights Van Allen Radiation Belts: From Discovery to the Van Allen Probes Era

Discovery of the Earth\textquoterights Van Allen radiation belts by instruments flown on Explorer 1 in 1958 was the first major discovery of the Space Age. The observation of distinct inner and outer zones of trapped megaelectron volt (MeV) particles, primarily protons at low altitude and electrons at high altitude, led to early models for source and loss mechanisms including Cosmic Ray Albedo Neutron Decay for inner zone protons, radial diffusion for outer zone electrons and loss to the atmosphere due to pitch angle scattering. This scattering lowers the mirror altitude for particles in their bounce motion parallel to the Earth\textquoterights magnetic field until they suffer collisional loss. A view of the belts as quasi-static inner and outer zones of energetic particles with different sources was modified by observations made during the Solar Cycle 22 maximum in solar activity over 1989\textendash1991. The dynamic variability of outer zone electrons was measured by the Combined Radiation Release and Effects Satellite launched in July 1990. This variability is caused by distinct types of heliospheric structure that vary with the solar cycle. The launch of the twin Van Allen Probes in August 2012 has provided much longer and more comprehensive measurements during the declining phase of Solar Cycle 24. Roughly half of moderate geomagnetic storms, determined by intensity of the ring current carried mostly by protons at hundreds of kiloelectron volts, produce an increase in trapped relativistic electron flux in the outer zone. Mechanisms for accelerating electrons of hundreds of electron volts stored in the tail region of the magnetosphere to MeVenergies in the trapping region are described in this review: prompt and diffusive radial transport and local acceleration driven by magnetospheric waves. Such waves also produce pitch angle scattering loss, as does outward radial transport, enhanced when the magnetosphere is compressed. While quasilinear simulations have been used to successfully reproduce many essential features of the radiation belt particle dynamics, nonlinear wave-particle interactions are found to be potentially important for causing more rapid particle acceleration or precipitation. The findings on the fundamental physics of the Van Allen radiation belts potentially provide insights into understanding energetic particle dynamics at other magnetized planets in the solar system, exoplanets throughout the universe, and in astrophysical and laboratory plasmas. Computational radiation belt models have improved dramatically, particularly in the Van Allen Probes era, and assimilative forecasting of the state of the radiation belts has become more feasible. Moreover, machine learning techniques have been developed to specify and predict the state of the Van Allen radiation belts. Given the potential Space Weather impact of radiation belt variability on technological systems, these new radiation belt models are expected to play a critical role in our technological society in the future as much as meteorological models do today.

Li, W.; Hudson, M.K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2018JA025940

Particle acceleration; particle loss; particle transport; Radiation belts; Van Allen Probes; wave-particle interactions

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecutive orbital passes) <400-keV electron enhancements during quiet periods. Our analysis reveals an incredibly cohesive observation that holds regardless of electron energies (~30 keV\textendash2.5 MeV) or geomagnetic conditions: the innermost Lpp is the innermost boundary of the initial energetic electron enhancements. Interestingly, the quantified energy-dependent relationship of the sudden, intense energetic electron enhancements, with respect to the innermost Lpp, also exhibit a very similar trend during both storm and nonstorm periods. In summary, the goal of this report is to provide a comprehensive quantification of this consistent relationship under various geomagnetic conditions, which will also enable better forecast and specification of energetic electrons in the inner magnetosphere.

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi-static subauroral ion drift electric field and parallel-accelerated electrons by kinetic Alfv\ en waves. These parallel electrons could precipitate and be accelerated via auroral acceleration processes powered by Alfv\ en waves propagating along the magnetic field with the plasmapause as a waveguide. The electron precipitation, superimposed on the heat conduction, could explain multiwavelength continuous STEVE emission. The green picket-fence emissions are likely optical manifestations of electron precipitation associated with wave structures traveling along the plasmapause.

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emission via heat conduction. STEVE corresponds to the sharp plasmapause boundary containing quasi-static subauroral ion drift electric field and parallel-accelerated electrons by kinetic Alfv\ en waves. These parallel electrons could precipitate and be accelerated via auroral acceleration processes powered by Alfv\ en waves propagating along the magnetic field with the plasmapause as a waveguide. The electron precipitation, superimposed on the heat conduction, could explain multiwavelength continuous STEVE emission. The green picket-fence emissions are likely optical manifestations of electron precipitation associated with wave structures traveling along the plasmapause.

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

Published by: Geophysical Research Letters      Published on: 11/2019

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

On the Acceleration Mechanism of Ultrarelativistic Electrons in the Center of the Outer Radiation Belt: A Statistical Study

Using energetic particle and wave measurements from the Van Allen Probes, Polar Orbiting Environmental Satellites (POES), and Geostationary Operational Environmental Satellite (GOES), the acceleration mechanism of ultrarelativistic electrons (>3 MeV) in the center of the outer radiation belt is investigated statistically. A superposed epoch analysis is conducted using 19 storms, which caused flux enhancements of 1.8\textendash7.7 MeV electrons. The evolution of electron phase space density radial profile suggests an energy-dependent acceleration of ultrarelativistic electrons in the outer belt. Especially, for electrons with very high energies (~7 MeV), prevalent positive phase space density radial gradients support inward radial diffusion being responsible for electron acceleration in the center of the outer belt (L*~3\textendash5) during most enhancement events in the Van Allen Probes era. We propose a two-step acceleration process to explain the acceleration of ~7 MeV electrons in the outer belt: intense and sustained chorus waves locally energize core electron populations to ultrarelativistic energies at high L region beyond the Van Allen Probes\textquoteright apogee, followed by inward radial diffusion which further energizes these populations to even higher energies. Statistical results of chorus wave activity inferred from POES precipitating electron measurements as well as core electron populations observed by the Van Allen Probes and GOES support this hypothesis.

Zhao, H.; Baker, D.N.; Li, X.; Malaspina, D.M.; Jaynes, A.N.; Kanekal, S.G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA027111

Acceleration mechanism; Inward radial diffusion; Local Acceleration; Phase space density; Radiation belts; ultrarelativistic electrons; Van Allen Probes

Characteristics and Generation of Low-Frequency Magnetosonic Waves Below the Proton Gyrofrequency

We report a Van Allen Probes observation of large-amplitude magnetosonic waves with the peak intensity below the proton gyrofrequency (fcp), which may potentially be misinterpreted as electromagnetic ion cyclotron waves. The frequency spacing of the wave harmonic structure suggests that these magnetosonic waves are excited at a distant source region and propagate radially inward. We also conduct a statistical analysis of low-frequency magnetosonic waves below fcp based on the Van Allen Probes data from October 2012 to December 2018. The spatial distribution shows that these low-frequency magnetosonic emissions are dominantly observed inside the plasmasphere from the prenoon to the midnight sector within 5\textdegree of the geomagnetic equator and typically have modest-to-strong wave amplitudes ranging from tens of pT to hundreds of pT. Our study provides insight into understanding the generation and propagation of these low-frequency magnetosonic waves in the Earth\textquoterights inner magnetosphere.

Teng, Shangchun; Li, Wen; Tao, Xin; Ma, Qianli; Shen, Xiaochen;

Published by: Geophysical Research Letters      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019GL085372

Below the proton gyrofrequency; Low frequency magnetosonic wave; Van Allen Probes; wave generation; Wave propagation characteristics

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field and magnetic field measurements to explore convection dynamics during storm time. From 0500 UT to 0600 UT on March 19 2015, auroral observations across ~4 h of magnetic local time (MLT) show that increases in the westward velocities of patches are closely related to earthward flow bursts in the inner plasma sheet. Together with the meridian scanning photometer (MSP) data, this suggests that the increase in the westward velocities of PPA patches is caused by earthward-moving ion injection structures carried by the fast earthward flows.

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

The Storm-Time Ring Current Response to ICMEs and CIRs Using Van Allen Probe Observations

Using Van Allen Probe observations of the inner magnetosphere during geomagnetic storms driven by interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs), we characterize the impact of these drivers on the storm-time ring current development. Using 25 ICME- and 35 CIR-driven storms, we have determined the ring current pressure development during the prestorm, main, early-recovery, and late-recovery storm phases, as a function of magnetic local time, L shell and ion species (H+, He+, and O+) over the 100- to 600-keV energy range. Consistent with previous results, we find that during the storm main phase, most of the ring current pressure in the inner magnetosphere is contributed by particles on open drift paths drifting duskward leading to a strong partial ring current. The largest difference between the ICME and CIR ring current responses during the storm main and early-recovery phases is the difference in the response of the <~55-keV O+ to these drivers. While the H+ pressure response shows similar source and convection patterns for ICME and CIR storms, the O+ pressure response is significantly stronger for ICME storms. The ICME O+ pressure increases more strongly than H+ with decreasing L and peaks at lower L shells than H+.

Mouikis, C.; Bingham, S.; Kistler, L.; Farrugia, C.; Spence, H.; Reeves, G.; Gkioulidou, M.; Mitchell, D.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2019JA026695

ICME vs CI; R Ion composition; Ring Current Pressure; Storm phases; Van Allen Probes

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and composition. For plasmaspheric hiss in the magnetosphere, observations indicate large variations in the wave intensity and wave normal angle, but less is known about the simultaneous variability of the magnetic field and number density. We use in situ measurements from the Van Allen Probe mission to demonstrate the variability of selected factors that control the size and shape of pitch angle diffusion coefficients: wave intensity, magnetic field strength, and electron number density. We then compare with the variability of diffusion coefficients calculated individually from colocated and simultaneous groups of measurements. We show that the distribution of the plasmaspheric hiss diffusion coefficients is highly non-Gaussian with large variance and that the distributions themselves vary strongly across the three phase space bins studied. In most bins studied, the plasmaspheric hiss diffusion coefficients tend to increase with geomagnetic activity, but our results indicate that new approaches that include natural variability may yield improved parameterizations. We suggest methods like stochastic parameterization of wave-particle interactions could use variability information to improve modeling of the outer radiation belt.

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2019

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions

Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5

We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave-particle interactions also contribute to drive butterfly PADs at L ≳ 1.9. Our study provides a feasible mechanism to explain the electron flux enhancement in the inner belt and the persistent presence of the butterfly PADs at L~1.5.

Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng;

Published by: Geophysical Research Letters      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019GL084822

3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes

Modeling the Electron Flux Enhancement and Butterfly Pitch Angle Distributions on L Shells <2.5

We analyze an energetic electron flux enhancement event in the inner radiation belt observed by Van Allen Probes during an intense geomagnetic storm. The energetic electron flux at L~1.5 increased by a factor of 3 with pronounced butterfly pitch angle distributions (PADs). Using a three-dimensional radiation belt model, we simulate the electron evolution under the impact of radial diffusion, local wave-particle interactions including hiss, very low frequency transmitters, and magnetosonic waves, as well as Coulomb scattering. Consistency between observation and simulation suggests that inward radial diffusion plays a dominant role in accelerating electrons up to 900 keV and transporting the butterfly PADs from higher L shells to form the butterfly PADs at L~1.5. However, local wave-particle interactions also contribute to drive butterfly PADs at L ≳ 1.9. Our study provides a feasible mechanism to explain the electron flux enhancement in the inner belt and the persistent presence of the butterfly PADs at L~1.5.

Hua, Man; Li, Wen; Ma, Qianli; Ni, Binbin; Nishimura, Yukitoshi; Shen, Xiao-Chen; Li, Haimeng;

Published by: Geophysical Research Letters      Published on: 09/2019

YEAR: 2019     DOI: 10.1029/2019GL084822

3-D radial belt modeling; Butterfly pitch angle distribution; Electron flux enhancement; inner belt and slot region; Inward radial diffusion; local wave-particle interactions; Van Allen Probes

Substorm-Ring Current Coupling: A Comparison of Isolated and Compound Substorms

Substorms are a highly variable process, which can occur as an isolated event or as part of a sequence of multiple substorms (compound substorms). In this study we identify how the low-energy population of the ring current and subsequent energization varies for isolated substorms compared to the first substorm of a compound event. Using observations of H+ and O+ ions (1 eV to 50 keV) from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the energy content of the ring current in L-MLT space. We observe that the ring current energy content is significantly enhanced during compound substorms as compared to isolated substorms by \~20\textendash30\%. Furthermore, we observe a significantly larger magnitude of energization (by \~40\textendash50\%) following the onset of compound substorms relative to isolated substorms. Analysis suggests that the differences predominantly arise due to a sustained enhancement in dayside driving associated with compound substorms compared to isolated substorms. The strong solar wind driving prior to onset results in important differences in the time history of the magnetosphere, generating significantly different ring current conditions and responses to substorms. The observations reveal information about the substorm injected population and the transport of the plasma in the inner magnetosphere.

Sandhu, J.; Rae, I.; Freeman, M.; Gkioulidou, M.; Forsyth, C.; Reeves, G.; Murphy, K.; Walach, M.-T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2019

YEAR: 2019     DOI: 10.1029/2019JA026766

inner magnetosphere; ring current; substorms; Van Allen; Van Allen Probes

Global Occurrences of Auroral Kilometric Radiation Related to Suprathermal Electrons in Radiation Belts

Auroral kilometric radiation (AKR) can potentially produce serious damage to space-borne systems by accelerating trapped radiation belt electrons to relativistic energies. Here we examine the global occurrences of AKR emissions in radiation belts based on Van Allen Probes observations from 1 October 2012 to 31 December 2016. The statistical results (1,848 events in total) show that AKR covers a broad region of L= 3\textendash6.5 and 00\textendash24 magnetic local time (MLT), with a higher occurrence on the nightside (20\textendash24 MLT and 00\textendash04 MLT) within L= 5\textendash6.5. All the AKR events are observed to be accompanied with suprathermal (\~1 keV) electron flux enhancements. During active geomagnetic periods, both AKR occurrences and electron injections tend to be more distinct, and AKR emission extends to the dayside. The current study shows that AKR emissions from the remote sources are closely associated with electron injections.

Zhao, Wanli; Liu, Si; Zhang, Sai; Zhou, Qinghua; Yang, Chang; He, Yihua; Gao, Zhonglei; Xiao, Fuliang;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083944

Auroral kilometric radiation; global occurrence; Radiation belt; suprathermal electron flux enhancenments; Van Allen Probes

Lightning Contribution to Overall Whistler Mode Wave Intensities in the Plasmasphere

Electromagnetic waves generated by lightning propagate into the plasmasphere as dispersed whistlers. They can therefore influence the overall wave intensity in space, which, in turn, is important for dynamics of the Van Allen radiation belts. We analyze spacecraft measurements in low-Earth orbit as well as in high-altitude equatorial region, together with a ground-based estimate of lightning activity. We accumulate wave intensities when the spacecraft are magnetically connected to thunderstorms and compare them with measurements obtained when thunderstorms are absent. We show that strong lightning activity substantially affects the wave intensity in a wide range of L-shells and altitudes. The effect is observed mainly between 500 Hz and 4 kHz, but its frequency range strongly varies with L-shell, extending up to 12 kHz for L lower than 3. The effect is stronger in the afternoon, evening, and night sectors, consistent with more lightning and easier wave propagation through the ionosphere.

ahlava, J.; emec, F.; Santolik, O.; a, Kolma\v; Hospodarsky, G.; Parrot, M.; Kurth, W.; Kletzing, C.;

Published by: Geophysical Research Letters      Published on: 07/2019

YEAR: 2019     DOI: 10.1029/2019GL083918

DEMETER; Lightning; Van Allen Probes; whistler mode; WWLLN

Ion Heating by Electromagnetic Ion Cyclotron Waves and Magnetosonic Waves in the Earth\textquoterights Inner Magnetosphere

Electromagnetic ion cyclotron (EMIC) waves and magnetosonic waves are commonly observed in the Earth\textquoterights magnetosphere associated with enhanced ring current activity. Using wave and ion measurements from the Van Allen Probes, we identify clear correlations between the hydrogen- and helium-band EMIC waves with the enhancement of trapped helium and oxygen ion fluxes, respectively. We calculate the diffusion coefficients of different ion species using quasi-linear theory to understand the effects of resonant scattering by EMIC waves. Our calculations indicate that EMIC waves can cause pitch angle scattering loss of several keV to hundreds of keV ions, and heating of tens of eV to several keV helium and oxygen ions by hydrogen- and helium-band EMIC waves, respectively. Moreover, we found that magnetosonic waves can cause the resonant heating of thermal protons. Our study indicates the importance of energy transfer from the EMIC and magnetosonic waves to ions with different species at thermal energies.

Ma, Q.; Li, W.; Yue, C.; Thorne, R.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Spence, H.;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083513

electromagnetic ion cyclotron waves; Ion heating; Quasilinear modeling; Resonant interaction in plasmasphere; ring current; Van Allen Probes; Van Allen Probes observation

Simulation of Prompt Acceleration of Radiation Belt Electrons During the 16 July 2017 Storm

We investigate the prompt enhancement of radiation belt electron flux observed by the Relativistic Electron Proton Telescope instrument on board Van Allen Probes following the 16 July 2017 CME-shock compression using MHD-test particle simulations. The prompt enhancements can be explained by the source population interacting with the azimuthally directed electric field impulses induced by CME-shock compressions of the dayside magnetopause. Electrons in drift resonance with the electric field impulse were accelerated by \~ 0.6 MeV on a drift period timescale (in minutes) as the impulse propagated from the dayside to the nightside around the flanks of the magnetosphere. MHD test particle simulation of energization and drift phase bunching, due to the bipolar electric field that accompanies the dayside compression and relaxation, is found to be consistent with Van Allen Probes observations. This study reproduces the energy-dependent drift echoes integrated over pitch angle and observed change in spectra for the first time.

Patel, Maulik; Li, Zhao; Hudson, Mary; Claudepierre, Seth; Wygant, John;

Published by: Geophysical Research Letters      Published on: 06/2019

YEAR: 2019     DOI: 10.1029/2019GL083257

Van Allen Probes

Characteristics of high energy proton responses to geomagnetic activities in the inner radiation belt observed by the RBSP satellite

High energy trapped particles in the radiation belts constitute potential threats to the functionality of satellites as they enter into those regions. In the inner radiation belt, the characteristics of high-energy (>20MeV) protons variations during geomagnetic activity times have been studied by implementing four-year (2013-2016) observations of the Van Allen probes. An empirical formula has been used to remove the satellite orbit effect, by which proton fluxes have been normalized to the geomagnetic equator. Case studies show that the region of L<1.7 is relatively stable, while L>1.7 is more dynamic and the most significant variation of proton fluxes occurs at L=2.0. The four-year survey at L=2.0 indicates that for every geomagnetic storm, sharp descent in proton fluxes is accompanied by the corresponding depression of SYM-H index, with a one-to-one correspondence, regardless of the storm intensity. Proton fluxes dropouts are synchronous with SYM-H reduction with similar short timescales. Our observational results reveal that high-energy protons in the inner radiation belt are very dynamic, especially for the outer zone of the inner belt, which is beyond our previous knowledge.

Xu, Jiyao; He, Zhaohai; Baker, D.N.; Roth, Ilan; Wang, C.; Kanekal, S.G.; Jaynes, A.N.; Liu, Xiao;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026205

geomagnetic activities; high energy proton; Inner radiation belt; one-to-one correspondence; prompt responses; RBSP satellite; Van Allen Probes

Characterization and Evolution of Radiation Belt Electron Energy Spectra Based on the Van Allen Probes Measurements

Based on the measurements of ~100-keV to 10-MeV electrons from the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron and Proton Telescope (REPT) on the Van Allen Probes, the radiation belt electron energy spectra characterization and evolution have been investigated systematically. The results show that the majority of radiation belt electron energy spectra can be represented by one of three types of distributions: exponential, power law, and bump-on-tail (BOT). The exponential spectra are generally dominant in the outer radiation belt outside the plasmasphere, power law spectra usually appear at high L-shells during injections of lower-energy electrons, and BOT spectra commonly dominate inside the plasmasphere at L>2.5 during relatively quiet times. The main features of three types of energy spectra have also been revealed. Specifically, for the BOT energy spectrum, the energy of local flux maximum usually ranges from approximately hundreds of keV to several MeV and the energy of local flux minimum varies from ~100 keV to ~MeV, both increasing as L-shell decreases, confirming the plasmaspheric hiss wave scattering to be the main mechanism forming the BOT energy spectra. Statistical results using 4-year observations from the Van Allen Probes on the relation between energy spectra and plasmapause location also show that the plasmasphere plays a critical role in shaping radiation belt electron energy spectrum: the peak location of BOT energy spectra is ~1 L-shell inside the minimum plasmapause, where BOT energy spectra mostly form in ~1\textendash2 days as a result of hiss wave scattering.

Zhao, H.; Johnston, W.R.; Baker, D.N.; Li, X.; Ni, B.; Jaynes, A.N.; Kanekal, S.G.; Blake, J.B.; Claudepierre, S.G.; Reeves, G.D.; Boyd, A.J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026697

Bump-on-tail energy spectrum; Energy spectrum; Exponential energy spectrum; Plasmapause; Power law energy spectrum; radiation belt electrons; Van Allen Probes

Conjugate Ionosphere-Magnetosphere Observations of a Sub-Alfv\ enic Compressional Intermediate- m Wave: A Case Study Using EKB Radar and Van Allen Probes

A Pc5 wave was simultaneously observed in the ionosphere by EKB radar and in the magnetosphere by both Van Allen Probe spacecraft within a substorm activity. The wave was located in the nightside, in 1.5- to 3-hr magnetic local time sector, and in the region corresponding to the magnetic shells with maximal distances 4.6\textendash7.8 Earth\textquoterights radii. As it was found using both the radar and spacecraft data, the wave had frequency of about 1.8 mHz and azimuthal wave number m≈-10; that is, the wave was westward propagating. The EKB radar data revealed the equatorward wave propagating in the ionosphere, which corresponded to the earthward propagation in the magnetosphere. Furthermore, the field-aligned magnetic component was approximately 2 times larger than both transverse components and accompanied by antiphase pressure oscillations; that is, the wave is compressional and diamagnetic. According to both radar and spacecraft measurements, among two transverse magnetic components, the dominant one was the poloidal. The wave was possibly driven by substorm-injected energetic protons registered by the spacecraft: the proton fluxes were modulated with the wave frequency at energies of about 90 keV, which corresponded to the energy of the drift wave-particle resonance. The wave frequency was much lower than the minimal frequency of the field line resonance calculated using the spacecraft data. We conclude that the wave is not the Alfv\ en mode, but some kind of compressional wave, for example, the drift-compressional mode.

Mager, Olga; Chelpanov, Maksim; Mager, Pavel; Klimushkin, Dmitri; Berngardt, Oleg;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019JA026541

compressional waves; Pc5; poloidal waves; SUPERDARN; ULF waves; Van Allen Probes

Effect of Low-Harmonic Magnetosonic Waves on the Radiation Belt Electrons Inside the Plasmasphere

In this paper, we presented two observational cases and simulations to indicate the relationship between the formation of butterfly-like electron pitch angle distributions and the emission of low-harmonic (LH) fast magnetosonic (MS) waves inside the high-density plasmasphere. In the wave emission region, the pitch angle of relativistic (>1 MeV) electrons becomes obvious butterfly-like distributions for both events (near-equatorially mirroring electrons are transported to lower pitch angles). Unlike relativistic (>1 MeV) electrons, energetic electrons (<1 MeV) change slightly, except that relatively low-energy electrons (<~150 keV) show butterfly-like distributions in the 21 August 2013 event. In theory, the LH MS waves can affect different-energy electrons through the bounce resonance, Landau resonance, and transit time scattering. By performing the Fokker-Planck diffusion simulations, we demonstrate that the bounce resonance with the LH MS waves mainly leads to the butterfly pitch angle distribution of MeV electrons, whereas the Landau resonance and transit time scattering mainly affect energetic electrons in the high-density region.

Yu, J.; Li, L; Cui, J.; Cao, J.; Wang, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026328

bounce resonance; Electron acceleration; Landau resonance; magnetosonic waves; transit-time scattering; Van Allen Probes

Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region

In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground-based data in order to derive the lower-energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequency sweep rate and starting frequencies of chorus emissions through analysis of wave data from the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes. The nonlinear wave growth theory of Omura and Nunn (2011, https://doi.org/10.1029/2010JA016280) serves as the basis for our inversion method, assuming that the triggering wave is originated by the linear cyclotron instability. We present 16 consecutive rising-tone emissions recorded in the generation region between 11 and 12 UT on 14 November 2012. The results of the inversion are compared with density and thermal velocities (parallel and perpendicular) of energetic electrons derived from the unidirectional flux data of the Helium, Oxygen, Proton, and Electron instrument, showing a good agreement: The normalized root-mean-square deviation between the measured and predicted values are less than \~15\%. We found that the theoretical amplitudes are consistent with the measured ones. The relation between linear and nonlinear wave growth agrees with our basic assumption; namely, linear growth is a preceding process of nonlinear wave growth. We analyze electron distributions at the relativistic resonant energy ranges.

asz, Lilla; Omura, Yoshiharu; Lichtenberger, J\; Friedel, Reinhard;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA026337

chorus inversion; Van Allen Probes; Wave-particle interaction

Investigating Loss of Relativistic Electrons Associated With EMIC Waves at Low L Values on 22 June 2015

In this study, rapid loss of relativistic radiation belt electrons at low L* values (2.4\textendash3.2) during a strong geomagnetic storm on 22 June 2015 is investigated along with five possible loss mechanisms. Both the particle and wave data are obtained from the Van Allen Probes. Duskside H+ band electromagnetic ion cyclotron (EMIC) waves were observed during a rapid decrease of relativistic electrons with energy above 5.2 MeV occurring outside the plasmasphere during extreme magnetopause compression. Lower He+ composition and enriched O+ composition are found compared to typical values assumed in other studies of cyclotron resonant scattering of relativistic electrons by EMIC waves. Quantitative analysis demonstrates that even with the existence of He+ band EMIC waves, it is the H+ band EMIC waves that are likely to cause the depletion at small pitch angles and strong gradients in pitch angle distributions of relativistic electrons with energy above 5.2 MeV at low L values for this event. Very low frequency wave activity at other magnetic local time can be favorable for the loss of relativistic electrons at higher pitch angles. An illustrative calculation that combines the nominal pitch angle scattering rate due to whistler mode chorus at high pitch angles with the H+ band EMIC wave loss rate at low pitch angles produces loss on time scale observed at L=2.4\textendash3.2. At high L values and lower energies, radial loss to the magnetopause is a viable explanation.

Qin, Murong; Hudson, Mary; Li, Zhao; Millan, Robyn; Shen, Xiaochen; Shprits, Yuri; Woodger, Leslie; Jaynes, Allison; Kletzing, Craig;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2018JA025726

cold ion composition; EMIC wave; minimum resonant energy; pitch angle diffusion; quasi-linear theory; relativistic electron loss; Van Allen Probes

Quenching of Equatorial Magnetosonic Waves by Substorm Proton Injections

Near equatorial (fast) magnetosonic waves, characterized by high magnetic compressibility, are whistler-mode emissions destabilized by proton shell/ring distributions. In the past, substorm proton injections are widely known to intensify magnetosonic waves in the inner magnetosphere. Here we report the unexpected observations by the Van Allen Probes of the magnetosonic wave quenching associated with the substorm proton injections under both high- and low-density conditions. The enhanced proton thermal pressure distorted the background magnetic field configuration and the cold plasma density distribution. The reduced phase velocities locally allowed the weak growth or even damping of magnetosonic waves. Meanwhile, the spatially irregularly varying refractive indices might suppress the cumulative growth of magnetosonic waves. For intense injections, this wave quenching region could extend over 2 hr in magnetic local time and 0.5 Earth radii in radial distance. These results provide a new understanding of the generation and distribution of magnetosonic waves.

Dai, Guyue; Su, Zhenpeng; Liu, Nigang; Wang, Bin; Zheng, Huinan; Wang, Yuming; Wang, Shui;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL082944

Bernstein mode instability; magnetosonic wave; Radiation belt; ring current; substorm injection; Van Allen Probes; Wave-particle interaction

Statistical Analysis of Transverse Size of Lower Band Chorus Waves Using Simultaneous Multisatellite Observations

Chorus waves are known to accelerate or scatter energetic electrons via quasi-linear or nonlinear wave-particle interactions in the Earth\textquoterights magnetosphere. In this letter, by taking advantage of simultaneous observations of chorus waveforms from at least a pair of probes among Van Allen Probes and/or Time History of Events and Macroscale Interactions during Substorms (THEMIS) missions, we statistically calculate the transverse size of lower band chorus wave elements. The average size of lower band chorus wave element is found to be ~315\textpm32 km over L shells of ~5\textendash6. Furthermore, our results suggest that the scale size of lower band chorus tends to be (1) larger at higher L shells; (2) larger at higher magnetic latitudes, especially on the dayside; and (3) larger in the azimuthal direction than in the radial direction. Our findings are crucial to quantify wave-particle interaction process, particularly the nonlinear interactions between chorus and energetic electrons.

Shen, Xiao-Chen; Li, Wen; Ma, Qianli; Agapitov, Oleksiy; Nishimura, Yukitoshi;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL083118

Chorus wave; Magnetosphere; Scale size; Van Allen Probes

Triggered Plasmaspheric Hiss: Rising Tone Structures

In this study, a rare hiss event observed by Van Allen Probe is reported and the possible generation is investigated based on wave and plasma measurements. The results suggest that the normal hiss (from 0.05fce to 0.5fce) with dominantly equatorward Poynting fluxes is locally generated by plasma sheet electrons via cyclotron instability. The low-frequency band (from 30 Hz to 0.05fce) with a mixture of equatorward and poleward Poynting fluxes is probably due to multiple reflections inside the plasmasphere. Such difference in the two bands is confirmed by the calculation of minimum energy of resonant electrons and local growth rate. Moreover, the analysis on the fine structures of normal hiss waves shows that besides the expected incoherent structure (below 1 kHz), several rising tone elements are measured above 1 kHz. The rising tone structures are probably triggered by the incoherent hiss part below 1 kHz, which is rarely reported before.

Zhu, Hui; Liu, Xu; Chen, Lunjin;

Published by: Geophysical Research Letters      Published on: 05/2019

YEAR: 2019     DOI: 10.1029/2019GL082688

Plasmaspheric Hiss; Radiation belts; Rising tone structure; Van Allen Probes

EMIC waves converted from equatorial noise due to M/Q=2 ions in the plasmasphere: Observations from Van Allen Probes and Arase

Equatorial noise (EN) emissions are observed inside and outside the plasmapause. EN emissions are referred to as magnetosonic mode waves. Using data from Van Allen Probes and Arase, we found conversion from EN emissions to electromagnetic ion cyclotron (EMIC) waves in the plasmasphere and in the topside ionosphere. A low frequency part of EN emissions becomes EMIC waves through branch splitting of EN emissions, and the mode conversion from EN to EMIC waves occurs around the frequency of M/Q=2 (deuteron and/or alpha particles) cyclotron frequency. These processes result in plasmaspheric EMIC waves. We investigated the ion composition ratio by characteristic frequencies of EN emissions and EMIC waves and obtained ion composition ratios. We found that the maximum composition ratio of M/Q=2 ions is ~10\% below 3000 km. The quantitative estimation of the ion composition will contribute to improving the plasma model of the deep plasmasphere and the topside ionosphere

Miyoshi, Y.; Matsuda, S.; Kurita, S.; Nomura, K.; Keika, K.; Shoji, M.; Kitamura, N.; Kasahara, Y.; Matsuoka, A.; Shinohara, I.; Shiokawa, K.; Machida, S.; Santolik, O.; Boardsen, S.A.; Horne, R.B.; Wygant, J.F.;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL083024

Arase; EMIC; M/Q=2 ions; Magnetsonic waves; plasmasphere; Van Allen Probes

Global occurrences of electrostatic electron cyclotron harmonic waves associated with radiation belt electron distributions

Electrostatic electron cyclotron harmonic (ECH) waves can yield diffuse aurora primarily at higher L-shells by driving efficient precipitation loss of plasma sheet electrons. Here using the Van Allen Probes high resolution data, we examine in detail the global occurrences of ECH waves during the period from October 1, 2012 to June 30, 2017 and find that there are totally 419 events of enhanced ECH waves. The statistical results demonstrate that ECH waves can be present over a broad region of L=4-6 and 00-24 MLT, with a higher occurrence in the region of L=5-6 and 06-19 MLT. The electron phase space density exhibits a distinct ring distribution (∂f/∂v⊥ >0) with the peak energy around a few keV. Both ECH wave events and the electron ring distributions are closely related and tend to be more distinct with increasing geomagnetic activity.

Chen, Yaru; Zhou, Qinghua; He, Yihua; Yang, Chang; Liu, Si; Gao, Zhonglei; Xiao, Fuliang;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082668

electron ring distribution; global occurrences; Radiation belt; Van Allen Probe observation; Van Allen Probes; waves

Investigation of Solar Proton Access into the inner magnetosphere on 11 September 2017

In this study, access of solar energetic protons to the inner magnetosphere on 11 September 2017 is investigated by computing the reverse particle trajectories with the Dartmouth geomagnetic cutoff code [Kress et al., 2010]. The maximum and minimum cutoff rigidity at each point along the orbit of Van Allen Probe A is numerically computed by extending the code to calculate cutoff rigidity for particles coming from arbitrary direction. Pulse-height analyzed (PHA) data has the advantage of providing individual particle energies and effectively excluding background high energy proton contamination. This technique is adopted to study the cutoff locations for solar protons with different energy. The results demonstrate that cutoff latitude is lower for solar protons with higher energy, consistent with low altitude vertical cutoffs. Both the observations and numerical results show that proton access into the inner magnetosphere depends strongly on angle between particle arrival direction and magnetic west. The numerical result is approximately consistent with the observation that the energy of almost all solar protons stays above the minimum cutoff rigidity.

Qin, Murong; Hudson, Mary; Kress, Brian; Selesnick, Richard; Engel, Miles; Li, Zhao; Shen, Xiaochen;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026380

cutoff energy; cutoff location; Dartmouth geomagnetic cutoff code; Pulse height analyzed data; Solar proton; straggling function; Van Allen Probes

Modulation of Locally Generated Equatorial Noise by ULF Wave

In this paper we report a rare and fortunate event of fast magnetosonic (MS, also called equatorial noise) waves modulated by compressional ultralow frequency (ULF) waves measured by Van Allen Probes. The characteristics of MS waves, ULF waves, proton distribution, and their potential correlations are analyzed. The results show that ULF waves can modulate the energetic ring proton distribution and in turn modulate the MS generation. Furthermore, the variation of MS intensities is attributed to not only ULF wave activities but also the variation of background parameters, for example, number density. The results confirm the opinion that MS waves are generated by proton ring distribution and propose a new modulation phenomenon.

Zhu, Hui; Chen, Lunjin; Liu, Xu; Shprits, Yuri;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026199

linear growth rate; magnetosonic waves; Radiation belts; ULF waves; Van Allen Probes

The Relationship Between EMIC Wave Properties and Proton Distributions Based on Van Allen Probes Observations

Plasma kinetic theory predicts that sufficiently anisotropic proton distribution will excite electromagnetic ion cyclotron (EMIC) waves, which in turn relax the proton distribution to a marginally stable state creating an upper bound on the relaxed proton anisotropy. Here, using EMIC wave observations and coincident plasma measurements made by Van Allen Probes in the inner magnetosphere, we show that the proton distributions are well constrained by this instability to a marginally stable state. Near the threshold, the probability of EMIC wave occurrence is highest, having left-handed polarization and observed near the magnetic equator with relatively small wave normal angles, indicating that these waves are locally generated. In addition, EMIC waves are distributed in two magnetic local time regions with different intensity. Compared with helium band waves, hydrogen band waves behave similarly except that they are often observed in low-density regions. These results reveal several important features regarding EMIC waves excitation and propagation.

Yue, Chao; Jun, Chae-Woo; Bortnik, Jacob; An, Xin; Ma, Qianli; Reeves, Geoffrey; Spence, Harlan; Gerrard, Andrew; Gkioulidou, Matina; Mitchell, Donald; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2019GL082633

EMIC waves; helium-band; hydrogen-band; plasma beta; proton temperature anisotropy; Van Allen Probes

Statistical Study of Selective Oxygen Increase in High-Energy Ring Current Ions During Magnetic Storms

Ion transport from the plasma sheet to the ring current is the main cause of the development of the ring current. Energetic (>150 keV) ring current ions are known to be transported diffusively in several days. A recent study suggested that energetic oxygen ions are transported closer to the Earth than protons due to the diffusive transport caused by a combination of the drift and drift-bounce resonances with Pc 3\textendash5 ultralow frequency waves during the 24 April 2013 magnetic storm. To understand the occurrence conditions of such selective oxygen increase (SOI), we investigate the phase space densities (PSDs) between protons and oxygen ions with the first adiabatic invariants (μ) of 0.1\textendash2.0 keV/nT measured by the Radiation Belt Storm Probes Ion Composition Experiment instrument on the Van Allen Probes at L ~ 3\textendash6 during 90 magnetic storms in 2013\textendash2017. We identified the SOI events in which oxygen PSDs increase while proton PSDs do not increase during a period of ~9 hr (one orbital period). Among the 90 magnetic storms, 33\% were accompanied by the SOI events. Global enhancements of Pc 4 and Pc 5 waves observed by ground magnetometers during the SOI events suggest that radial transport due to combination of the drift-bounce resonance with Pc 4 oscillations and the drift resonance with Pc 5 oscillations can be the cause of SOIs. The contribution of the SOI events to the magnetic storm intensity is roughly estimated to be ~9\% on average.

Mitani, K.; Seki, K.; Keika, K.; Gkioulidou, M.; Lanzerotti, L.; Mitchell, D.; Kletzing, C.; Yoshikawa, A.; Obana, Y.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026168

Magnetic Storms; Oxygen ions; ring current; Van Allen Probes

The Effects of Geomagnetic Storms and Solar Wind Conditions on the Ultrarelativistic Electron Flux Enhancements

Using data from the Relativistic Electron Proton Telescope on the Van Allen Probes, the effects of geomagnetic storms and solar wind conditions on the ultrarelativistic electron (E > ~3 MeV) flux enhancements in the outer radiation belt, especially regarding their energy dependence, are investigated. It is showed that, statistically, more intense geomagnetic storms are indeed more likely to cause flux enhancements of ~1.8- to 7.7-MeV electrons, though large variations exist. As the electron energy gets higher, the probability of flux enhancement gets lower. To shed light on which conditions of the storms are preferred to cause ultrarelativistic electron flux enhancement, detailed superposed epoch analyses of solar wind parameters and geomagnetic indices during moderate and intense storms with/without flux enhancements of different energy electrons are conducted. The results suggest that the storms with higher solar wind speed, sustained southward interplanetary magnetic field Bz, lower solar wind number density, higher solar wind Ey, and elevated and sustained substorm activity are more likely to cause ultrarelativistic electron flux enhancements in the outer belt. Comparing results of different energy electrons, the solar wind speed and AE index are the two parameters mostly correlated with the energy-dependent acceleration of ultrarelativistic electrons: Storms with higher solar wind speed and elevated and sustained substorm activity are more likely to cause flux enhancement of ultrarelativistic electrons with higher energies. This suggests the important roles of inward radial diffusion as well as the source and seed populations provided by substorms on the energy-dependent acceleration of ultrarelativistic electrons.

Zhao, H.; Baker, D.; Li, X.; Jaynes, A.; Kanekal, S.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026257

Acceleration mechanism; Geomagnetic storms; Radiation belt; solar wind conditions; ultrarelativistic electrons; Van Allen Probes

Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity

Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi-linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC-driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (ΔL ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL, electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4 L shells) with similar patterns between satellites.

Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026291

EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes

Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss

In addition to clarifying morphological structures of the Earth\textquoterights radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagnetic activity driven by strong solar storms (i.e., coronal mass ejections, or CMEs) almost inexorably leads to relativistic electron production through the intermediary step of intense magnetospheric substorms. In this study, we report observations over the 6-year period 1 September 2012 to 1 September 2018. We focus on data about the relativistic and ultrarelativistic electrons (E>=5 MeV) measured by the Relativistic Electron-Proton Telescope sensors on board the Van Allen Probes spacecraft. This work portrays the radiation belt acceleration, transport, and loss characteristics over a wide range of geomagnetic events. We emphasize features seen repeatedly in the data (three-belt structures, \textquotedblleftimpenetrable\textquotedblright barrier properties, and radial diffusion signatures) in the context of acceleration and loss mechanisms. We especially highlight solar wind forcing of the ultrarelativistic electron populations and extended periods when such electrons were absent. The analysis includes new display tools showing spatial features of the mission-long time variability of the outer Van Allen belt emphasizing the remarkable dynamics of the system.

Baker, Daniel; Hoxie, Vaughn; Zhao, Hong; Jaynes, Allison; Kanekal, Shri; Li, Xinlin; Elkington, Scot;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2018JA026259

convection electric field; Energetic particle deep penetration; Low L Region; Radiation belts; Van Allen Probes

Multi-instrument Observations of Mesoscale Enhancement of Subauroral Polarization Stream Associated With an Injection

Subauroral polarization streams (SAPS) prefer geomagnetically disturbed conditions and strongly correlate with geomagnetic indexes. However, the temporal evolution of SAPS and its relationship with dynamic and structured ring current and particle injection are still not well understood. In this study, we performed detailed analysis of temporal evolution of SAPS during a moderate storm on 18 May 2013 using conjugate observations of SAPS from the Van Allen Probes (VAP) and the Super Dual Auroral Radar Network (SuperDARN). The large-scale SAPS (LS-SAPS) formed during the main phase of this storm and decayed due to the northward turning of the interplanetary magnetic field. A mesoscale (approximately several hundreds of kilometers zonally) enhancement of SAPS was observed by SuperDARN at 0456 UT. In the conjugate magnetosphere, a large SAPS electric field (\~8 mV/m) pointing radially outward, a local magnetic field dip, and a dispersionless ion injection were observed simultaneously by VAP-A at L shell = 3.5 and MLT = 20. The particle injection observed by VAP-A is likely associated with the particle injection observed by the Geostationary Operational Environmental Satellite 15 near 20 MLT. Magnetic perturbations observed by the ground magnetometers and flow reversals observed by SuperDARN reveal that this mesoscale enhancement of SAPS developed near the Harang reversal and before the substorm onset. The observed complex signatures in both space and ground can be explained by a two-loop current wedge generated by the perturbed plasma pressure gradient and the diamagnetic effect of the structured ring current following particle injection.

Wang, Zihan; Zou, Shasha; Shepherd, Simon; Liang, Jun; Gjerloev, Jesper; Ruohoniemi, Michael; Kunduri, Bharat; Wygant, John;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019JA026535

Field-Aligned Current; Particle Injection; Sub-auroral Polarization Stream; Van Allen Probes

Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss

Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satellites, together with quasi-linear calculation, we found that plume whistler mode waves are most effective in pitch angle scattering loss, particularly for the electrons from tens to hundreds of keV. Our new finding provides the first direct evidence of effective pitch angle scattering driven by plume whistler mode waves and is critical for understanding energetic electron loss process in the inner magnetosphere. We suggest the effect of plume whistler mode waves be accurately incorporated into future radiation belt modeling.

Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

Published by: Geophysical Research Letters      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019GL082095

electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave

Typical Characteristics of Whistler Mode Waves Categorized by Their Spectral Properties Using Van Allen Probes Observations

Properties of banded, no-gap, lower band only, and upper band only whistler mode waves (0.1\textendash0.8fce) outside the plasmasphere are investigated using Van Allen Probes data. Our analysis shows that no-gap whistler waves have higher occurrence rate at morning side and dayside, while banded and lower band only waves have higher occurrence rate between midnight and dawn. We also find that the occurrence rate of no-gap whistler waves peaks at magnetic latitude |MLAT|\~8\textendash10\textdegree, while banded waves have higher occurrence rate near the equator for urn:x-wiley:grl:media:grl58818:grl58818-math-0001\textdegree. The wave normal angle distributions of these four groups of waves are similar to previous results. The distinct local time and latitudinal distribution of no-gap and banded whistler mode waves is critical to further understand the formation mechanism of the power minimum at half electron gyrofrequency.

Teng, S.; Tao, X.; Li, W.;

Published by: Geophysical Research Letters      Published on: 03/2019

YEAR: 2019     DOI: 10.1029/2019GL082161

banded whistler waves; chorus waves; no-gap whistler waves; Van Allen Probes

Contribution of ULF wave activity to the global recovery of the outer radiation belt during the passage of a high-speed solar wind stream observed in September 2014

Energy coupling between the solar wind and the Earth\textquoterights magnetosphere can affect the electron population in the outer radiation belt. However, the precise role of different internal and external mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper describes how Ultra Low Frequency (ULF) wave activity during the passage of Alfv\ enic solar wind streams contributes to the global recovery of the relativistic electron population in the outer radiation belt. To investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which we can clearly distinguish the enhancement of electron fluxes from the background. We found that the global recovery that started on September 22, 2014, which coincides with the corotating interaction region preceding a high-speed stream and the occurrence of persistent substorm activity, provides an excellent scenario to explore the contribution of ULF waves. To support our analyses, we employed ground and space-based observational data, global magnetohydrodynamic (MHD) simulations, and calculated the ULF wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from higher to lower L-shells. MHD simulation results agree with observed ULF wave activity in the magnetotail, which leads to both fast and Alfv\ en modes in the magnetospheric nightside sector. The observations agree with the empirical model and are confirmed by Phase Space Density (PhSD) calculations for this global recovery period.

Da Silva, L.; Sibeck, D.; Alves, L.; Souza, V.; Jauer, P.; Claudepierre, S.; Marchezi, J.; Agapitov, O.; Medeiros, C.; Vieira, L.; Wang, C.; Jiankui, S.; Liu, Z.; Gonzalez, W.; Dal Lago, A.; Rockenbach, M.; Padua, M.; Alves, M.; Barbosa, M.; Fok, M.-C.; Baker, D.; Kletzing, C.; Kanekal, S.; Georgiou, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1029/2018JA026184

alfv\ en fluctuations; Earth\textquoterights magnetosphere; high speed stream; Radiation belts; relativistic electron flux; ULF wave; Van Allen Probes

Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright

Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4351

Van Allen Probes

Reply to \textquoterightThe dynamics of Van Allen belts revisited\textquoteright

Mann, I.; Ozeke, L.; Morley, S.; Murphy, K.; Claudepierre, S.; Turner, D.; Baker, D.; Rae, I.; Kale, A.; Milling, D.; Boyd, A.; Spence, H.; Singer, H.; Dimitrakoudis, S.; Daglis, I.; Honary, F.;

Published by: Nature Physics      Published on: 02/2019

YEAR: 2019     DOI: 10.1038/nphys4351

Van Allen Probes

Global Empirical Picture of Magnetospheric Substorms Inferred From Multimission Magnetometer Data

Magnetospheric substorms represent key explosive processes in the interaction of the Earth\textquoterights magnetosphere with the solar wind, and their understanding and modeling are critical for space weather forecasting. During substorms, the magnetic field on the nightside is first stretched in the antisunward direction and then it rapidly contracts earthward bringing hot plasmas from the distant space regions into the inner magnetosphere, where they contribute to geomagnetic storms and Joule dissipation in the polar ionosphere, causing impressive splashes of aurora. Here we show for the first time that mining millions of spaceborne magnetometer data records from multiple missions allows one to reconstruct the global 3-D picture of these stretching and dipolarization processes. Stretching results in the formation of a thin (less than the Earth\textquoterights radius) and strong current sheet, which is diverted into the ionosphere during dipolarization. In the meantime, the dipolarization signal propagates further into the inner magnetosphere resulting in the accumulation of a longer lived current there, giving rise to a protogeomagnetic storm. The global 3-D structure of the corresponding substorm currents including the substorm current wedge is reconstructed from data.

Stephens, G.; Sitnov, M.; Korth, H.; Tsyganenko, N.; Ohtani, S.; Gkioulidou, M.; Ukhorskiy, A;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025843

Current sheet thinning; Data-mining; Magnetotail dipolarization; Storm-substorm relationship; substorm current wedge; substorms; Van Allen Probes

Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes

The generation of a high-frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (\~10-6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1\textendash2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally inside the plasmasphere due to the instability of injected kiloelectron volt electrons.

He, Zhaoguo; Chen, Lunjin; Liu, Xu; Zhu, Hui; Liu, Si; Gao, Zhonglei; Cao, Yong;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081578

electron; high frequency; local generation; Plasmaspheric Hiss; substorm injection; Van Allen Probes

Local Generation of High-Frequency Plasmaspheric Hiss Observed by Van Allen Probes

The generation of a high-frequency plasmaspheric hiss (HFPH) wave observed by Van Allen Probes is studied in this letter for the first time. The wave has a moderate power spectral density (\~10-6 nT2/Hz), with a frequency range extended from 2 to 10 kHz. The correlated observations of waves and particles indicate that HFPH is associated with the enhancement of electron flux during the substorm on 6 January 2014. Calculations of the wave linear growth rate driven by the fitted electron phase space density show that the electron distribution after the substorm onset is efficient for the HFPH generation. The energy of the contributing electrons is about 1\textendash2 keV, which is consistent with the observation. These results support that the observed HFPH is likely to be generated locally inside the plasmasphere due to the instability of injected kiloelectron volt electrons.

He, Zhaoguo; Chen, Lunjin; Liu, Xu; Zhu, Hui; Liu, Si; Gao, Zhonglei; Cao, Yong;

Published by: Geophysical Research Letters      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018GL081578

electron; high frequency; local generation; Plasmaspheric Hiss; substorm injection; Van Allen Probes

Low-Energy (+ Ion Outflow Directly Into the Inner Magnetosphere: Van Allen Probes Observations

The heavy ion component of the low-energy (eV to hundreds of eV) ion population in the inner magnetosphere, also known as the O+ torus, is a crucial population for various aspects of magnetospheric dynamics. Yet even though its existence has been known since the 1980s, its formation remains an open question. We present a comprehensive study of a low-energy (

Gkioulidou, Matina; Ohtani, S.; Ukhorskiy, A; Mitchell, D.; Takahashi, K.; Spence, H.; Wygant, J.; Kletzing, C.; Barnes, R.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA025862

inner magnetosphere; O+ outflow; Van Allen Probes

The March 2015 Superstorm Revisited: Phase Space Density Profiles and Fast ULF Wave Diffusive Transport

We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. For these electrons, the observed PSD versus L* profiles during the recovery phase of the storm have a positive radial gradient. We compare the observed temporal evolution of the PSD profiles during the recovery phase with those produced by radial diffusion simulations driven by observed Ultralow Frequency wave power as measured on the ground. Our results indicate that the dominant flux enhancement, inside L* < 5, in the heart of the outer radiation belt during the March 2015 geomagnetic storm is consistent with that produced by fast inward radial diffusion of electrons from a dynamic outer boundary driven by enhanced Ultralow Frequency wave power.

Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026326

Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes

Properties of Whistler Mode Waves in Earth\textquoterights Plasmasphere and Plumes

Whistler mode wave properties inside the plasmasphere and plumes are systematically investigated using 5-year data from Van Allen Probes. The occurrence and intensity of whistler mode waves in the plasmasphere and plumes exhibit dependences on magnetic local time, L, and AE. Based on the dependence of the wave normal angle and Poynting flux direction on L shell and normalized wave frequency to electron cyclotron frequency (fce), whistler mode waves are categorized into four types. Type I: ~0.5 fce with oblique wave normal angles mostly in plumes; Type II: 0.01\textendash0.5 fce with small wave normal angles in the outer plasmasphere or inside plumes; Type III: <0.01 fce with oblique wave normal angles mostly within the plasmasphere or plumes; Type IV: 0.05\textendash0.5 fce with oblique wave normal angles deep inside the plasmasphere. The Poynting fluxes of Type I and II waves are mostly directed away from the equator, suggesting local amplification, whereas the Poynting fluxes of Type III and IV are directed either away from or toward the equator, and may originate from other source regions. Whistler mode waves in plumes have relatively small wave normal angles with Poynting flux mostly directed away from the equator and are associated with high electron fluxes from ~30 keV to hundreds of keV, all of which support local amplification. Whistler mode wave amplitudes in plumes can be stronger than typical plasmaspheric hiss, particularly during active times. Our results provide critical insights into understanding whistler mode wave generation inside the plasmasphere and plumes.

Shi, Run; Li, Wen; Ma, Qianli; Green, Alex; Kletzing, Craig; Kurth, William; Hospodarsky, George; Claudepierre, Seth; Spence, Harlan; Reeves, Geoff;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026041

Plasmaspheric Hiss; plasmaspheric plume; Van Allen Probes; whistler mode waves

2018

Response of banded whistler-mode waves to the enhancement of solar wind dynamic pressure in the inner Earth\textquoterights magnetosphere

With observations of Van Allen Probe A, in this letter we display a typical event where banded whistler waves shifted up their frequencies with frequency bands broadening as a response to the enhancement of solar wind dynamic pressure. Meanwhile, the anisotropy of electrons with energies about several tens of keV was observed to increase. Through the comparison of the calculated wave growth rates and observed wave spectral intensity, we suggest that those banded whistler waves observed with frequencies shifted up and frequency bands broadening could be locally excited by these hot electrons with increased anisotropy. The current study provides a great in situ evidence for the influence on frequencies of banded whistler waves by the enhancement of solar wind dynamic pressures, which reveals the important role of solar wind dynamic pressures playing in the frequency properties of banded whistler waves.

Yu, Xiongdong; Yuan, Zhigang; Li, Haimeng; Huang, Shiyong; Wang, Dedong; Yao, Fei; Funsten, H.; Wygant, J.;

Published by: Geophysical Research Letters      Published on: Mar-08-2020

YEAR: 2018     DOI: 10.1029/2018GL078849

Banded whistler-mode waves; Frequency properties; inner magnetosphere; solar wind dynamic pressure; Van Allen Probes

Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit

Variations in the high-energy relativistic electron flux of the radiation belts depend on transport, acceleration, and loss processes, and importantly on the lower-energy seed population. However, data on the seed population is limited to a few satellite missions. Here we present a new method that utilizes data from the Medium Energy Proton/Electron Detector on board the low-altitude Polar Operational Environmental Satellites to retrieve the seed population at a pitch angle of 90\textdegree. The integral flux values measured by Medium Energy Proton/Electron Detector relate to a low equatorial pitch angle and were converted to omnidirectional flux using parameters obtained from fitting one or two urn:x-wiley:jgra:media:jgra54628:jgra54628-math-0001 functions to pitch angle distributions given by three and a half years of Van Allen Probes data. Two methods to convert from integral to differential flux are explored. One utilizes integral and differential flux energy distributions from the AE9 model, the second employs an iterative fitting approach based on a Reverse Monte Carlo (RMC) method. The omnidirectional differential flux was converted to an equatorial pitch angle of 90\textdegree, again using statistical pitch angle distributions from Van Allen Probe data. We validate the resulting 90\textdegree flux for 100- to 600-keV electrons against measurements from the Van Allen Probes and show an average agreement within a factor of 4 for L* > 3.7. The resulting data set offers a high time resolution, across multiple magnetic local time planes, and may be used to formulate event-specific low-energy boundary conditions for radiation belt models.

Allison, Hayley; Horne, Richard; Glauert, Sarah; Del Zanna, Giulio;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA025786

electrons; integral flux; Radiation belts; seed population; Van Allen Probes

Equatorial Evolution of the Fast Magnetosonic Mode in the Source Region: Observation-Simulation Comparison of the Preferential Propagation Direction

Recent analysis of an event observed by the Van Allen Probes in the source region outside the plasmapause has shown that fast magnetosonic waves (also referred to as equatorial noise) propagate preferentially in the azimuthal direction, implying that wave amplification should occur during azimuthal propagation. To demonstrate this, we carry out 2-D particle-in-cell simulations of the fast magnetosonic mode at the dipole magnetic equator with the simulation box size, the magnetic field inhomogeneity, and the plasma parameters chosen from the same event recently analyzed. The self-consistently evolving electric and magnetic field fluctuations are characterized by spectral peaks at harmonics of the local proton cyclotron frequency. The azimuthal component of the electric field fluctuations is larger than the radial component, indicating wave propagation mainly along the azimuthal direction. Because the simulation box is within the source region, this also implies wave amplification mainly during azimuthal propagation. The excellent agreement between the wave polarization properties of the present simulations and the recently reported observations is clear evidence that the main wave amplification occurs during azimuthal propagation in the source region.

Min, Kyungguk; Boardsen, Scott; Denton, Richard; Liu, Kaijun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2018

YEAR: 2018     DOI: 10.1029/2018JA026037

2D particle-in-cell simulation; Fast Magnetosonic Waves; Perpendicular propagation; Van Allen Probes



  1      2      3      4      5      6