Bibliography




Notice:

  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.





Wave acceleration of electrons in the Van Allen radiation belts



AuthorHorne, Richard; Thorne, Richard; Shprits, Yuri; Meredith, Nigel; Glauert, Sarah; Smith, Andy; Kanekal, Shrikanth; Baker, Daniel; Engebretson, Mark; Posch, Jennifer; Spasojevic, Maria; Inan, Umran; Pickett, Jolene; Decreau, Pierrette;
KeywordsLocal Acceleration due to Wave-Particle Interaction
AbstractThe Van Allen radiation belts1 are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth\textquoterights magnetic field. Their properties vary according to solar activity2, 3 and they represent a hazard to satellites and humans in space4, 5. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth6, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.
Year of Publication2005
JournalNature
Volume437
Number of Pages227-230
Section
Date Published09/2005
ISBN
URLhttp://www.nature.com/nature/journal/v437/n7056/full/nature03939.html
DOI10.1038/nature03939