Imaging the plasmasphere with ground based GPS TEC observations and comparisons with in situ plasmaspheric observations with Van Allen Probes

TitleImaging the plasmasphere with ground based GPS TEC observations and comparisons with in situ plasmaspheric observations with Van Allen Probes
Publication TypeConference Paper
Year of Publication2014
AuthorsFoster, JC
Conference Name2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS)2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS)
Date Published08/2014
PublisherIEEE
Conference LocationBeijing, China
Keywordsmagnetic fields; Magnetic resonance imaging; Magnetosphere; Van Allen Probes
AbstractFor over a decade, incoherent scatter radar observations of the mid and auroral-latitude ionosphere combined with ground based GPS observations of total electron content (TEC) have been used to study the intense storm enhanced density (SED) plumes that form over the Americas during major geomagnetic storms [1]. Magnetic field mapping of the ionospheric observations to magnetospheric heights revealed close correspondence between the SED and plasmasphere erosion plumes observed from space in EUV imagery by the IMAGE satellite [2]. During the current solar cycle the global distribution of GPS receivers used in creating the TEC maps and movies has increased significantly providing near-continuous two-dimensional coverage of TEC morphology and dynamics over much the northern hemisphere mid and high-latitude region. The dynamics and structure of the outer reaches of the plasmasphere, the plasmasphere boundary layer, are driven by coupling to overlying magnetospheric processes. To first order, cold plasma redistribution proceeds such that plasma parcels at ionospheric heights and at the apex of a magnetic field line move together in the E × B direction maintaining their magnetic field alignment. In this sense the TEC structure and dynamics imaged in the ionosphere projects along the magnetic field providing an image of the plasmaspheric configuration. The recently launched Van Allen Probes twin satellites (RBSP-A & RBSP-B) are in near-equatorial orbits well suited for studies of phenomena at the apex of field lines threading the plasmasphere boundary layer. The RBSP instrumentation includes in situ electric field, density, ion composition, magnetic field, plasma wave, and full particle pitch angle and energy spectral information from <1 eV to 10s of MeV for ions and electrons. We use ground based TEC mapping to create 2-D images of the plasmasphere during transits of the RBSP and Themis spacecraft. We intercompare the dynamic changes in the plasmasphe- e configuration with the detailed in situ observations. We image and observe the transition from quiet plasmasphere, to erosion plume formation and development, to recovery. The RBSP spacecraft provide quantitative measurements of ion composition and erosion flux within the plume and the mapping between low and high altitudes facilitates intercomparisons between ionospheric and magnetospheric characteristics and phenomena.
URLhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6929943
DOI10.1109/URSIGASS.2014.6929943


Page Last Modified: September 9, 2016