Radiation belt losses observed from multiple stratospheric balloons over Antarctica

TitleRadiation belt losses observed from multiple stratospheric balloons over Antarctica
Publication TypeConference Paper
Year of Publication2014
AuthorsMcCarthy, MP, Millan, RM, Sample, JG, Smith, DM
Conference Name2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS)2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS)
Date Published08/2014
Conference LocationBeijing, China
KeywordsExtraterrestrial measurements; Loss measurement; Magnetosphere; Van Allen Probes
AbstractRelativistic electrons, trapped by Earth's magnetic field, have received increasing attention since increasing numbers of commercial and research spacecraft traverse regions of high radiation flux. The Van Allen probes were launched into Earth's radiation belts in September 2012, making comprehensive measurements of charged particle fluxes and electromagnetic fields, with the objective of a better understanding of the processes that modulate radiation belt fluxes. Because losses of radiation belt electrons to Earth's atmosphere are very difficult to measure from high altitude spacecraft, a balloon-based program, consisting of campaigns in January 2013 and 2014, was funded to measure losses in conjunction with the Van Allen probes mission. We present results from both balloon campaigns, which succeeded in maintaining an array of balloons over Antarctica, achieving spacecraft conjunction measurements, and viewing several periods of disturbed magnetospheric activity. Measurements from a balloon platform uniquely allows loss measurements for several hundred seconds from the same location, and therefore illuminate the role of slow magnetic field variations in radiation belt losses. The coincident measurement of radiation belt losses by the balloon array provides vital information for understanding flux changes at geosynchronous altitudes, giving a means to distinguish true losses from lossless transport away from the spacecraft.

Page Last Modified: September 9, 2016