The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements

TitleThe evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements
Publication TypeJournal Article
Year of Publication2015
AuthorsZhao, H, Li, X, Baker, DN, Fennell, JF, Blake, JB, Larsen, BA, Skoug, R, Funsten, H, Friedel, RH, Reeves, GD, Spence, H, Mitchell, D, Lanzerotti, LJ, Rodriguez, J
JournalJournal of Geophysical Research: Space Physics
Date Published08/2015
KeywordsGeomagnetic storms; Ring current energy content; Ring current ions; The DPS relation; The Dst index; Van Allen Probes
AbstractEnabled by the comprehensive measurements from the MagEIS, HOPE, and RBSPICE instruments onboard Van Allen Probes in the heart of the radiation belt, the relative contributions of ions with different energies and species to the ring current energy density and their dependence on the phases of geomagnetic storms are quantified. The results show that lower energy (<50 keV) protons enhance much more often and also decay much faster than higher energy protons. During the storm main phase, ions with energies < 50 keV contribute more significantly to the ring current than those with higher energies; while the higher energy protons dominate during the recovery phase and quiet times. The enhancements of higher energy proton fluxes as well as energy content generally occur later than those of lower energy protons, which could be due to the inward radial diffusion. For the March 29, 2013 storm we investigated in detail, the contribution from O+ is ~25% of the ring current energy content during the main phase, and the majority of that comes from < 50 keV O+. This indicates that even during moderate geomagnetic storms the ionosphere is still an important contributor to the ring current ions. Using the Dessler-Parker-Sckopke relation, the contributions of ring current particles to the magnetic field depression during this geomagnetic storm are also calculated. The results show that the measured ring current ions contribute about half of the Dst depression.
URLhttp://doi.wiley.com/10.1002/2015JA021533
DOI10.1002/2015JA021533
Short TitleJ. Geophys. Res. Space Physics


Page Last Modified: September 8, 2015