Analysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations

TitleAnalysis of plasmaspheric hiss wave amplitudes inferred from low-altitude POES electron data: Validation with conjunctive Van Allen Probes observations
Publication TypeJournal Article
Year of Publication2015
Authorsde Soria-Santacruz, M, Li, W, Thorne, RM, Ma, Q, Bortnik, J, Ni, B, Kletzing, CA, Kurth, WS, Hospodarsky, GB
JournalJournal of Geophysical Research: Space Physics
Date Published10/2015
KeywordsPlasmaspheric Hiss; Van Allen Probes; wave-particle interactions; Waves global model
AbstractPlasmaspheric hiss plays an important role in controlling the overall structure and dynamics of the Earth's radiation belts. The interaction of plasmaspheric hiss with radiation belt electrons is commonly evaluated using diffusion codes, which rely on statistical models of wave observations that may not accurately reproduce the instantaneous global wave distribution, or the limited in-situ satellite wave measurements from satellites. This paper evaluates the performance and limitations of a novel technique capable of inferring wave amplitudes from low-altitude electron flux observations from the POES spacecraft, which provide extensive coverage in L-shell and MLT. We found that, within its limitations, this technique could potentially be used to build a dynamic global model of the plasmaspheric hiss wave intensity. The technique is validated by analyzing the conjunctions between the POES spacecraft and the Van Allen Probes from September 2012 to June 2014. The technique performs well for moderate-to-strong hiss activity (≥30 pT) with sufficiently high electron fluxes. The main source of these limitations is the number of counts of energetic electrons measured by the POES spacecraft capable of resonating with hiss waves. For moderate-to-strong hiss events, the results show that the wave amplitudes from the EMFISIS instruments onboard the Van Allen Probes are well reproduced by the POES technique, which provides more consistent estimates than the parameterized statistical hiss wave model based on CRRES data.
URLhttp://onlinelibrary.wiley.com/doi/10.1002/2015JA021148/abstract
DOI10.1002/2015JA021148
Short TitleJ. Geophys. Res. Space Physics


Page Last Modified: February 19, 2016