A Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN

TitleA Statistical Study of Whistler Waves Observed by Van Allen Probes (RBSP) and Lightning Detected by WWLLN
Publication TypeJournal Article
Year of Publication2016
AuthorsZheng, H, Holzworth, RH, Brundell, JB, Jacobson, AR, Wygant, JR, Hospodarsky, GB, Mozer, FS, Bonnell, J
JournalJournal of Geophysical Research: Space Physics
Paginationn/a - n/a
Date Published03/2016
Keywordslightnting; RBSP; Van Allen Probes; VLF; whistler wave
AbstractLightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1–3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.
URLhttp://onlinelibrary.wiley.com/doi/10.1002/2015JA022010/full
DOI10.1002/2015JA022010
Short TitleJ. Geophys. Res. Space Physics


Page Last Modified: March 30, 2016