Can Solar Wind Decompressive Discontinuities Suppress Magnetospheric Electromagnetic Ion Cyclotron Waves Associated With Fresh Proton Injections?

Author
Keywords
Abstract
Electromagnetic ion cyclotron (EMIC) waves play an important role in the energy transfer among particles of different energies and species in the magnetosphere, whose drivers have been commonly recognized as solar wind compressions and storm/substorm proton injections. However, how the solar wind decompressions related to frequently occurring discontinuities compete with the proton injections in the evolution of EMIC waves has been rarely investigated. Here we present a complete end-to-end observation by Wind, THEMIS, and Van Allen Probes missions during the main phase of the 23 February 2014 storm of a succession of solar wind rotational discontinuities decompressing the magnetosphere within 200 s, adiabatically decelerating the freshly injected >10 keV protons, and thus suppressing the EMIC waves in the inner magnetosphere. Our results highlight the importance of solar wind conditions for the evolution of inner magnetospheric EMIC waves from a new perspective.
Notes
Year of Publication
2020
Journal
Geophysical Research Letters
Volume
47
Number
Number of Pages
e2020GL090296
Date Published
08/2020
URL
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL090296
DOI
https://doi.org/10.1029/2020GL090296