Found 1084 entries in the Bibliography.
Showing entries from 1 through 50
2021 |
Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss wave model ... Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael; YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028403 chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions |
Ring current decay during storm recovery phase may be affected by different loss processes. In this study, we have investigated the lifetimes of ring current ions (H+ and O+) of energies from 1 keV to several hundred keV at L shell from 3 to 6 during the storm recovery phase through a statistical survey. The observational data of 48 geomagnetic storms from March 2013 to May 2019 are collected based on Van Allen Probe observations. We find that (1) the observed lifetimes of H+ and O+ in general increase with L shell and (2) ... Chen, Ao; Yue, Chao; Chen, HongFei; Zong, Qiugang; Fu, Suiyan; Wang, Yongfu; Ren, Jie; YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028500 charge exchange; lifetime; ring current decay; Van Allen Probes |
We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ... Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.; YEAR: 2021   DOI: https://doi.org/10.1029/2020GL090632 Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes |
We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ... Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.; YEAR: 2021   DOI: https://doi.org/10.1029/2020GL090632 Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes |
We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ... Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.; YEAR: 2021   DOI: https://doi.org/10.1029/2020GL090632 Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes |
We present new and previously unreported in situ observations of Hertz frequency multiharmonic mode field line resonances detected by the Electric Field and Waves instrument on-board the NASA Van Allen probes during low-L perigee passes. Spectral analysis of the spin-plane electric field data reveals the waves in numerous perigee passes, in sequential passes of probes A and B, and with harmonic frequency structures from ∼0.5 to 3.5 Hz which vary with L-shell, altitude, and from day-to-day. Comparing the observations to wa ... Lena, F.; Ozeke, L.; Wygant, J.; Tian, S.; Breneman, A.; Mann, I.; YEAR: 2021   DOI: https://doi.org/10.1029/2020GL090632 Field line resonance; Ionosphere; magneto-seismology; Magnetosphere; plasmasphere; standing Alfvén waves; Van Allen Probes |
In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have c ... Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei; YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028158 central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes |
In this study, the excitation of narrowband fast magnetosonic (MS) waves near the lower hybrid resonance frequency (fLHR) has been investigated with observations from Van Allen Probes mission and linear growth theory. A typical wave event is first examined to show that these waves can be excited through linear instabilities driven by partial shell distributions of protons. Then it is found that these narrowband MS waves from 188 wave events observed by the Van Allen Probe A between January 1, 2013 to December 31, 2015 have c ... Ouyang, Zhihai; Yuan, Zhigang; Yu, Xiongdong; Yao, Fei; YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028158 central frequencies; linear growth rates; lower hybrid resonance frequency; narrowband fast magnetosonic wave; Proton rings; Van Allen Probes |
Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ... Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang; YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028354 Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes |
Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ... Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang; YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028354 Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes |
2020 |
Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ... Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028216 ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes |
Magnetospheric ELF/VLF waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, ERG and RBSP satellites, POES/ ... Takeshita, Yuhei; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Kasahara, Yoshiya; Oyama, Shin-Ichiro; Connors, Martin; Manninen, Jyrki; Jordanova, Vania; Baishev, Dmitry; Oinats, Alexey; Kurkin, Vladimir; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028216 ELF/VLF wave; Arase; Van Allen Probes; PWING; RAM-SCB simulation; subauroral latitudes |
We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativ ... Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028335 pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons |
Van Allen Probes (VAPs) and multiple ground-based stations simultaneously observed prompt emergences and disappearances of electromagnetic ion cyclotron (EMIC) waves driven by the sequentially enhanced solar wind dynamic pressure in the dayside inner magnetosphere on 6 November 2015. The measured hot protons (> 60 keV) display enhancements of perpendicular temperature during compressions, which provides sufficient temperature anisotropies for the EMIC wave generation so that the calculated linear growth rate also agrees well ... Xue, Zuxiang; Yuan, Zhigang; Yu, Xiongdong; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL091479 EMIC wave; solar wind dynamic pressure; Magnetospheric compression; Multipoint observations; Van Allen Probes |
Results from the NASA Van Allen Probes mission indicate extensive observations of mirror/drift-mirror (M/D-M hereafter) unstable plasma regions in the nightside inner magnetosphere. Said plasmas lie on the threshold between the kinetic and frozen-in plasma regimes and have favorable conditions for the formation of M/D-M modes and subsequent ultra-low frequency (ULF) wave signatures in the surrounding plasma. We present the results of a climatological analysis of plasma-γ (anisotropy measure) and total plasma-β (ratio of pa ... Cooper, M.; Gerrard, A.; Lanzerotti, L.; Soto-Chavez, A.; Kim, H.; Kuzichev, I.; Goodwin, L.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028773 Mirror mode-unstable plasma; ULF waves; magnetotail injections; inner magnetosphere; Van Allen Probes |
Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ... Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028411 ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes |
Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ... Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028411 ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes |
Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients Pc5 (2–7 mHz) ultralow frequency (ULF) waves play a significant role in resonating with particles and transferring energy in the coupled magnetospheric and ionospheric system. Recent studies found that Pc5 ULF waves can be triggered by foreshock transients which can perturb the magnetopause through dynamic pressure variation. However, whether foreshock transient-driven Pc5 ULF waves are geoeffective and can propagate globally is still poorly understood. In this study, we take advantage of the conjunction between in situ (b ... Wang, Boyi; Liu, Terry; Nishimura, Yukitoshi; Zhang, Hui; Hartinger, Michael; Shi, Xueling; Ma, Qianli; Angelopoulos, Vassilis; Frey, Harald; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028411 ULF wave; Field line resonance; wave number; global; THEMIS; aurora; Van Allen Probes |
Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ... Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi; YEAR: 2020   DOI: https://doi.org/10.26464/epp2020060 radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes |
Alpha Transmitter Signal Reflection and Triggered Emissions Russian Alpha radio navigation system (RSDN-20) emits F1 = 11.9 kHz signals into the magnetosphere which propagate as whistler mode waves. Observed by waveform continuous burst mode from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on Van Allen Probes, a case is presented and featured with ducted propagation, multiple reflections, and triggered emissions. Both risers and fallers appear in the triggered emissions. We use a ray tracing method to demonstrate ducted propagation, which has a s ... Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; An, Xin; Horne, Richard; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090165 VLF transmitter; ducted propagation; triggered emission; Van Allen Probes |
On the Formation of Wedge-Like Ion Spectral Structures in the Nightside Inner Magnetosphere Recent observations in the nightside inner magnetosphere have identified a series of wedge-like spectral structures in the energy-time spectrograms of oxygen, helium, and hydrogen ion fluxes. Although the shapes and distributions of these structures have been characterized by case and statistical studies, their formation mechanism remains unclear. Here we utilize a particle tracing model to reproduce the wedge-like structures successively observed by the twin Van Allen Probes. The model suggests that these structures origina ... Zhou, Xu-Zhi; Ren, Jie; Yang, Fan; Yue, Chao; Zong, Qiu-Gang; Fu, Sui-Yan; Wang, Yongfu; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028420 wedge-like structure; inner magnetosphere; substorm injection; magnetospheric convection; ring current; magnetotail; Van Allen Probes |
On the Formation of Wedge-Like Ion Spectral Structures in the Nightside Inner Magnetosphere Recent observations in the nightside inner magnetosphere have identified a series of wedge-like spectral structures in the energy-time spectrograms of oxygen, helium, and hydrogen ion fluxes. Although the shapes and distributions of these structures have been characterized by case and statistical studies, their formation mechanism remains unclear. Here we utilize a particle tracing model to reproduce the wedge-like structures successively observed by the twin Van Allen Probes. The model suggests that these structures origina ... Zhou, Xu-Zhi; Ren, Jie; Yang, Fan; Yue, Chao; Zong, Qiu-Gang; Fu, Sui-Yan; Wang, Yongfu; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028420 wedge-like structure; inner magnetosphere; substorm injection; magnetospheric convection; ring current; magnetotail; Van Allen Probes |
Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ... Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL089875 |
Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ... Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL089875 |
Formation of the Low-Energy “Finger” Ion Spectral Structure Near the Inner Edge of the Plasma Sheet We present a case study of the H+, He+, and O+ low-energy “finger” structure observed by the Van Allen Probe A Helium, Oxygen, Proton, and Electron (HOPE) spectrometer on 26 October 2016. This structure, whose characteristic energy is from approximately tens of eV to a few keV, looks like a “finger” that is rich in O+ and He+, faint in H+ on an energy-time spectrogram. By using the Space Weather Modeling Framework (SWMF) and Weimer05 electric fields, combined with a dipole or more self-consistent magnetohydrodynamic ... Wang, Y.; Kistler, L.; Mouikis, C.; Zhang, J.; Lu, J; Welling, D.; Rastaetter, L.; Bingham, S.; Jin, Y.; Wang, L.; Miyoshi, Y.; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL089875 |
Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ... Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090027 ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes |
Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ... Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090027 ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes |
Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ... Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090027 ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes |
Relation Between Shock-Related Impulse and Subsequent ULF Wave in the Earth s Magnetosphere The generation of Pc4-5 ultralow frequency (ULF) waves after interplanetary shock-induced electric field impulses in the Earth s magnetosphere is studied using Van Allen Probes measurements by investigating the relationship between the first impulses and subsequent resonant ULF waves. In the dayside, the relevant time scales of the first impulse is correlated better with local Alfvén speed than with local eigenfrequency, implying that the temporal scale of the first impulse is more likely related to fast-mode wave propagati ... Zhang, Dianjun; Liu, Wenlong; Li, Xinlin; Sarris, Theodore; Wang, Yongfu; Xiao, Chao; Zhang, Zhao; Wygant, John; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090027 ULF wave; interplanetary shock; Magnetosphere; Field line resonance; electric field; wave excitation; Van Allen Probes |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
On 31 January 2016, the flux of >2 MeV electrons observed by Geostationary Operational Environmental Satellite (GOES)-13 dropped to the background level during a minor storm main phase (−48 nT). Then, a second storm (−53 nT) occurred on 2 February; during the 3 days after its main phase, the flux remained at background level. Using data from various instruments on the GOES, Polar Operational Environmental Satellites (POES), Radiation Belt Storm Probes (RBSP), Meteor-M2, and Fengyun-series spacecraft, we study this long ... Wu, H.; Chen, T.; Kalegaev, V.; Panasyuk, M.; Vlasova, N.; Duan, S.; Zhang, X.; He, Z.; Luo, J.; Wang, C.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028098 Radiation belt; relativistic electron dropout; Geomagnetic storm; Van Allen Probes |
Precipitation Loss of Radiation Belt Electrons by Two-Band Plasmaspheric Hiss Waves A two-band plasmaspheric hiss consisting of a low-frequency band (normal hiss with the frequency below 2 kHz) and a high-frequency band (locally generated hiss with the frequency up to 10 kHz) was observed on 6 January 2014 by the Van Allen Probes (He et al., 2019, https://doi.org/10.1029/2018GL081578). The electron scattering effect driven by this kind of two-band plasmaspheric hiss is evaluated by the quasi-linear diffusion simulation for the first time. Realistic wave characteristic parameters of the two-band plasmasp ... He, Zhaoguo; Yan, Qi; Zhang, Xiaoping; Yu, Jiang; Ma, Yonghui; Cao, Yong; Cui, Jun; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028157 two-band hiss; radiation belt electron; loss; Van Allen Probes |
Precipitation Loss of Radiation Belt Electrons by Two-Band Plasmaspheric Hiss Waves A two-band plasmaspheric hiss consisting of a low-frequency band (normal hiss with the frequency below 2 kHz) and a high-frequency band (locally generated hiss with the frequency up to 10 kHz) was observed on 6 January 2014 by the Van Allen Probes (He et al., 2019, https://doi.org/10.1029/2018GL081578). The electron scattering effect driven by this kind of two-band plasmaspheric hiss is evaluated by the quasi-linear diffusion simulation for the first time. Realistic wave characteristic parameters of the two-band plasmasp ... He, Zhaoguo; Yan, Qi; Zhang, Xiaoping; Yu, Jiang; Ma, Yonghui; Cao, Yong; Cui, Jun; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028157 two-band hiss; radiation belt electron; loss; Van Allen Probes |
Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and ... Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028527 fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes |
Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and ... Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028527 fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes |
Analytical Fast Magnetosonic Wave Model Based on Observations of Van Allen Probe Based on observations of Van Allen Probe-A during the period from 19 September 2012 to 28 February 2016, the relations of the fast magnetosonic (MS) wave amplitude Bw with kp index, the wave normal angle (WNA), and the wave normalized frequency (norF) are presented. Then, we establish an analytical regression model for MS wave amplitude as a function of geomagnetic storm activity (presented by kp index), L-shell (L), magnetic local time (MLT), magnetic latitude (λ), and the characteristics of MS wave, that is, wave norF and ... Yao, Fei; Yuan, Zhigang; Yu, Xiongdong; Wang, Dedong; Ouyang, Zhihai; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028527 fast magnetosonic wave; Van Allen Probe; analytical regression model; wave normal angle; Plasmapause; Van Allen Probes |
Cross-Scale Quantification of Storm-Time Dayside Magnetospheric Magnetic Flux Content A clear understanding of storm-time magnetospheric dynamics is essential for a reliable storm forecasting capability. The dayside magnetospheric response to an interplanetary coronal mass ejection (ICME; dynamic pressure Pdyn > 20 nPa and storm-time index SYM-H < −150 nT) is investigated using in situ OMNI, Geotail, Cluster, MMS, GOES, Van Allen Probes, and THEMIS measurements. The dayside magnetic flux content is directly quantified from in situ magnetic field measurements at different radial distances. The arrival ... Akhavan-Tafti, M.; Fontaine, D.; Slavin, J.; Le Contel, O.; Turner, D.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028027 interplanetary coronal mass ejection; magnetic flux quantification; cross-scale observations; flux transfer event; Dungey cycle; Geomagnetic storm; Van Allen Probes |
Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ... Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028315 Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes |
Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ... Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028315 Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes |
Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising to ... Colpitts, Chris; Miyoshi, Yoshizumi; Kasahara, Yoshiya; Delzanno, Gian; Wygant, John; Cattell, Cynthia; Breneman, Aaron; Kletzing, Craig; Cunningham, Greg; Hikishima, Mitsuru; Matsuda, Shoya; Katoh, Yuto; Ripoll, Jean-Francois; Shinohara, Iku; Matsuoka, Ayako; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028315 Chorus; wave; propagation; Simultaneous observations; Radiation belt; Van Allen Probes |
The local generation of high-frequency plasmaspheric hiss has recently been reported by a case study (He et al., 2019, https://doi.org/10.1029/2018GL081578). In this research, we perform statistics of global distributions of the locally generated high-frequency plasmaspheric hiss (LHFPH) for different levels of substorm activity, using 6-year observational data from Van Allen Probes. The statistics find that the LHFPH amplitude presents a strong magnetic local time (MLT) asymmetry and highly depends on substorm activity, and ... He, Zhaoguo; Yu, Jiang; Chen, Lunjin; Xia, Zhiyang; Wang, Wenrui; Li, Kun; Cui, Jun; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028526 |
Substorm injection and solar wind dynamic pressure have long been considered as two main drivers of electromagnetic ion cyclotron (EMIC) wave excitation, but clear observational evidence is still lacking. With Van Allen Probes data from 2012–2017, we have investigated the roles of the two EMIC wave drivers separately, by using time-modified AE+ and . Both the occurrence rate and magnetic amplitude of waves significantly increase with the enhancement of each index. During large AE+, EMIC waves are mainly generated in the du ... Chen, Huayue; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090275 EMIC wave; wave excitation; source region; substorm injection; solar wind dynamic pressure; Earth s magnetosphere; Van Allen Probes |
Substorm injection and solar wind dynamic pressure have long been considered as two main drivers of electromagnetic ion cyclotron (EMIC) wave excitation, but clear observational evidence is still lacking. With Van Allen Probes data from 2012–2017, we have investigated the roles of the two EMIC wave drivers separately, by using time-modified AE+ and . Both the occurrence rate and magnetic amplitude of waves significantly increase with the enhancement of each index. During large AE+, EMIC waves are mainly generated in the du ... Chen, Huayue; Gao, Xinliang; Lu, Quanming; Tsurutani, Bruce; Wang, Shui; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090275 EMIC wave; wave excitation; source region; substorm injection; solar wind dynamic pressure; Earth s magnetosphere; Van Allen Probes |
The k-nearest-neighbor technique is used to mine a multimission magnetometer database for a subset of data points from time intervals that are similar to the storm state of the magnetosphere for a particular moment in time. These subsets of data are then used to fit an empirical magnetic field model. Performing this for each snapshot in time reconstructs the dynamic evolution of the magnetic and electric current density distributions during storms. However, because weaker storms occur more frequently than stronger storms, th ... Stephens, G.; Bingham, S.; Sitnov, M.; Gkioulidou, M.; Merkin, V.; Korth, H.; Tsyganenko, N.; . Y. Ukhorskiy, A; YEAR: 2020   DOI: https://doi.org/10.1029/2020SW002583 storms; empirical geomagnetic field; ring current; data mining; eastward current; plasma pressure; Van Allen Probes |
Energetic electron dynamics is highly affected by plasma waves through quasilinear and/or nonlinear interactions in the Earth s inner magnetosphere. In this letter, we provide physical explanations for a previously reported intriguing event from the Van Allen Probes observations, where bursts of electron butterfly distributions at tens of keV exhibit remarkable correlations with chorus waves. Both test particle and quasilinear simulations are used to reveal the formation mechanism for the bursts of electron butterfly distrib ... Gan, L.; Li, W.; Ma, Q.; Artemyev, A.; Albert, J.; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL090749 butterfly distribution; chorus waves; Electron acceleration; Radiation belts; nonlinear interaction; Van Allen Probes |
Dynamic Properties of Particle Injections Inside Geosynchronous Orbit: A Multisatellite Case Study Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called “RBSP”) at ~5.8 RE, and a THEMIS satellite at ~5.3 RE, observed substorm-related particle injections and local dipolarizations near the central meridi ... Motoba, T.; Ohtani, S.; Claudepierre, S.; Reeves, G.; . Y. Ukhorskiy, A; Lanzerotti, L.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028215 deep particle injections; dipolarizations; substorms; localized DF; Van Allen Probes |
Dynamic Properties of Particle Injections Inside Geosynchronous Orbit: A Multisatellite Case Study Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called “RBSP”) at ~5.8 RE, and a THEMIS satellite at ~5.3 RE, observed substorm-related particle injections and local dipolarizations near the central meridi ... Motoba, T.; Ohtani, S.; Claudepierre, S.; Reeves, G.; . Y. Ukhorskiy, A; Lanzerotti, L.; YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028215 deep particle injections; dipolarizations; substorms; localized DF; Van Allen Probes |
Suprathermal electrons are a major heat source of ionospheric plasma. How the suprathermal electrons evolve during their bounces inside the plasmasphere is a fundamental question for the magnetosphere-ionosphere coupling. On the basis of Van Allen Probes observations and quasi-linear simulations, we present here the first quantitative study on the evolution of suprathermal electrons under the competition between Landau heating by whistler mode hiss waves and Coulomb collisional cooling by background plasma inside a plasmasph ... Wang, Zhongshan; Su, Zhenpeng; Liu, Nigang; Dai, Guyue; Zheng, Huinan; Wang, Yuming; Wang, Shui; YEAR: 2020   DOI: https://doi.org/10.1029/2020GL089649 magnetosphere-ionosphere coupling; whistler mode hiss waves; Landau resonance; Coulomb collisions; suprathermal electrons; ring current; Van Allen Probes |