Bibliography





Van Allen Probes Bibliography is from August 2012 through September 2021

Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 17 entries in the Bibliography.


Showing entries from 1 through 17


2018

MMS, Van Allen Probes, GOES 13, and Ground Based Magnetometer Observations of EMIC Wave Events Before, During, and After a Modest Interplanetary Shock

The stimulation of EMIC waves by a magnetospheric compression is perhaps the closest thing to a controlled experiment that is currently possible in magnetospheric physics, in that one prominent factor that can increase wave growth acts at a well-defined time. We present a detailed analysis of EMIC waves observed in the outer dayside magnetosphere by the four Magnetosphere Multiscale (MMS) spacecraft, Van Allen Probe A, and GOES 13, and by four very high latitude ground magnetometer stations in the western hemisphere before, ...

Engebretson, M.; Posch, J.; Capman, N.; Campuzano, N.; elik, P.; Allen, R.; Vines, S.; Anderson, B.; Tian, S.; Cattell, C.; Wygant, J.; Fuselier, S.; Argall, M.; Lessard, M.; Torbert, R.; Moldwin, M.; Hartinger, M.; Kim, H.; Russell, C.; Kletzing, C.; Reeves, G.; Singer, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2018

YEAR: 2018     DOI: 10.1029/2018JA025984

Van Allen Probes

2017

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ...

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Dominance of high energy (>150 keV) heavy ion intensities in Earth\textquoterights middle to outer magnetosphere

Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically ...

Cohen, Ian; Mitchell, Donald; Kistler, Lynn; Mauk, Barry; Anderson, Brian; Westlake, Joseph; Ohtani, Shinichi; Hamilton, Douglas; Turner, Drew; Blake, Bern; Fennell, Joseph; Jaynes, Allison; Leonard, Trevor; Gerrard, Andrew; Lanzerotti, Louis; Allen, Robert; Burch, James;

Published by: Journal of Geophysical Research: Space Physics      Published on: 08/2017

YEAR: 2017     DOI: 10.1002/2017JA024351

energetic ion composition; magnetospheric ion composition; Magnetospheric Multiscale (MMS); outer magnetosphere; ring current composition; suprathermal ions; Van Allen Probes

Global observations of magnetospheric high- m poloidal waves during the 22 June 2015 magnetic storm

We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave ...

Le, G.; Chi, P.; Strangeway, R.; Russell, C.; Slavin, J.; Takahashi, K.; Singer, H.; Anderson, B.; Bromund, K.; Fischer, D.; Kepko, E.; Magnes, W.; Nakamura, R.; Plaschke, F.; Torbert, R.;

Published by: Geophysical Research Letters      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2017GL073048

field line resonances; high-m poloidal waves; magnetic storm; magnetospheric multiscale mission; ULF waves; Van Allen Probes

Spatial Scale and Duration of One Microburst Region on 13 August 2015

Prior studies of microburst precipitation have largely relied on estimates of the spatial scale and temporal duration of the microburst region in order to determine the radiation belt loss rate of relativistic electrons. These estimates have often relied on the statistical distribution of microburst events. However, few studies have directly observed the spatial and temporal evolution of a single microburst event. In this study, we combine BARREL balloon-borne X-ray measurements with FIREBIRD-II and AeroCube-6 CubeSat electr ...

Anderson, B.; Shekhar, S.; Millan, R.; Crew, A.; Spence, H.; Klumpar, D.; Blake, J.; O\textquoterightBrien, T.; Turner, D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2017

YEAR: 2017     DOI: 10.1002/2016JA023752

Microbursts; Radiation Belt Dynamics; Van Allen Probes; whistler mode chorus waves

2016

The permeability of the magnetopause to a multispecies substorm injection of energetic particles

Leakage of ions from the magnetosphere into the magnetosheath remains an important topic in understanding the plasma physics of Earth\textquoterights magnetopause and the interaction of the solar wind with the magnetosphere. Here using sophisticated instrumentation from two spacecraft (Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes and Energetic Ion Spectrometer on the Magnetospheric Multiscale) spaced uniquely near and outside the dayside magnetopause, we are able to determine the escape mech ...

Westlake, J.; Cohen, I.; Mauk, B.; Anderson, B.; Mitchell, D.; Gkioulidou, M.; Walsh, B.; Lanzerotti, L.; Strangeway, R.; Russell, C.;

Published by: Geophysical Research Letters      Published on: 09/2016

YEAR: 2016     DOI: 10.1002/2016GL070189

energetic particles; magnetopause; magnetosheath; MMSEPD; Van Allen Probes

Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm

The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a \textquotedblleftred alert\textquotedblright, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer dat ...

Reiff, P.; Daou, A.; Sazykin, S; Nakamura, R.; Hairston, M.; Coffey, V.; Chandler, M.; Anderson, B.; Russell, C.; Welling, D.; Fuselier, S.; Genestreti, K.;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069154

Dipolarization; Geomagnetic storm; MMS; prediction; simulation; Space weather; Van Allen Probes

2015

On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations

Magnetotail processes and structures related to substorm growth phase/onset auroral arcs remain poorly understood mostly due to the lack of adequate observations. In this study we make a comparison between ground-based optical measurements of the premidnight growth phase/onset arcs at subauroral latitudes and magnetically conjugate measurements made by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) at ~780 km in altitude and by the Van Allen Probe B (RBSP-B) spacecraft crossing L values o ...

Motoba, T.; Ohtani, S.; Anderson, B.; Korth, H.; Mitchell, D.; Lanzerotti, L.; Shiokawa, K.; Connors, M.; Kletzing, C.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2015

YEAR: 2015     DOI: 10.1002/jgra.v120.1010.1002/2015JA021676

FACs; growth phase/onset arc; M-I coupling; Van Allen Probes

A Summary of the BARREL Campaigns: Technique for studying electron precipitation

The Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) studies the loss of energetic electrons from Earth\textquoterights radiation belts. BARREL\textquoterights array of slowly drifting balloon payloads was designed to capitalize on magnetic conjunctions with NASA\textquoterights Van Allen Probes. Two campaigns were conducted from Antarctica in 2013 and 2014. During the first campaign in January and February of 2013, there were three moderate geomagnetic storms with Sym-Hmin < -40 nT. Similarly, two mino ...

Woodger, L.; Halford, A.; Millan, R.; McCarthy, M.; Smith, D.; Bowers, G.; Sample, J.; Anderson, B.; Liang, X.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2015

YEAR: 2015     DOI: 10.1002/2014JA020874

electron precipitation; event timing; gamma ray burst; multi-point observation; Radiation belts; Van Allen Probes; x-ray spectroscopy

2013

The Balloon Array for RBSP Relativistic Electron Losses (BARREL)

BARREL is a multiple-balloon investigation designed to study electron losses from Earth\textquoterights Radiation Belts. Selected as a NASA Living with a Star Mission of Opportunity, BARREL augments the Radiation Belt Storm Probes mission by providing measurements of relativistic electron precipitation with a pair of Antarctic balloon campaigns that will be conducted during the Austral summers (January-February) of 2013 and 2014. During each campaign, a total of 20 small (\~20 kg) stratospheric balloons will be successively ...

Millan, R.; McCarthy, M.; Sample, J.; Smith, D.; Thompson, L.; McGaw, D.; Woodger, L.; Hewitt, J.; Comess, M.; Yando, K.; Liang, A.; Anderson, B.; Knezek, N.; Rexroad, W.; Scheiman, J.; Bowers, G.; Halford, A.; Collier, A.; Clilverd, M.; Lin, R.; Hudson, M.;

Published by: Space Science Reviews      Published on: 11/2013

YEAR: 2013     DOI: 10.1007/s11214-013-9971-z

RBSP; Van Allen Probes

2007

Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers

[1] Energetic electrons (E > 100 keV) in the Earth\textquoterights radiation belts undergo Doppler-shifted cyclotron resonant interactions with a variety of whistler mode waves leading to pitch angle scattering and subsequent loss to the atmosphere. In this study we assess the relative importance of plasmaspheric hiss and lightning-generated whistlers in the slot region and beyond. Electron loss timescales are determined using the Pitch Angle and energy Diffusion of Ions and Electrons (PADIE) code with global models of the s ...

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 08/2007

YEAR: 2007     DOI: 10.1029/2007JA012413

Local Loss due to VLF/ELF/EMIC Waves

2006

Storm time evolution of the outer radiation belt: Transport and losses

During geomagnetic storms the magnetic field of the inner magnetosphere exhibits large-scale variations over timescales from minutes to days. Being mainly controlled by the magnetic field the motion of relativistic electrons of the outer radiation belt can be highly susceptible to its variations. This paper investigates evolution of the outer belt during the 7 September 2002 storm. Evolution of electron phase space density is calculated with the use of a test-particle simulation in storm time magnetic and electric fields. Th ...

Ukhorskiy, A; Anderson, B.; Brandt, P.; Tsyganenko, N.;

Published by: Journal of Geophysical Research      Published on: 11/2006

YEAR: 2006     DOI: 10.1029/2006JA011690

Magnetopause Losses

Energetic outer zone electron loss timescales during low geomagnetic activity

Following enhanced magnetic activity the fluxes of energetic electrons in the Earth\textquoterights outer radiation belt gradually decay to quiet-time levels. We use CRRES observations to estimate the energetic electron loss timescales and to identify the principal loss mechanisms. Gradual loss of energetic electrons in the region 3.0 <= L <= 5.0 occurs during quiet periods (Kp < 3-) following enhanced magnetic activity on timescales ranging from 1.5 to 3.5 days for 214 keV electrons to 5.5 to 6.5 days for 1.09 MeV electrons ...

Meredith, Nigel; Horne, Richard; Glauert, Sarah; Thorne, Richard; Summers, D.; Albert, Jay; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 05/2006

YEAR: 2006     DOI: 10.1029/2005JA011516

Local Loss due to VLF/ELF/EMIC Waves

2005

Impact of toroidal ULF waves on the outer radiation belt electrons

Relativistic electron fluxes in the outer radiation belt exhibit highly variable complex behavior. Previous studies have established a strong correlation of electron fluxes and the inner magnetospheric ULF waves in the Pc 3\textendash5 frequency range. Resonant interaction of ULF waves with the drift motion of radiation belt electrons violates their third adiabatic invariant and consequently leads to their radial transport. If the wave-particle interaction has a stochastic character, then the electron transport is diffusive. ...

Ukhorskiy, A; Takahashi, K; Anderson, B.; Korth, H.;

Published by: Journal of Geophysical Research      Published on: 10/2005

YEAR: 2005     DOI: 10.1029/2005JA011017

Radial Transport

2003

Energization of relativistic electrons in the presence of ULF power and MeV microbursts: Evidence for dual ULF and VLF acceleration

We examine signatures of two types of waves that may be involved in the acceleration of energetic electrons in Earth\textquoterights outer radiation belts. We have compiled a database of ULF wave power from SAMNET and IMAGE ground magnetometer stations for 1987\textendash2001. Long-duration, comprehensive, in situ VLF/ELF chorus wave observations are not available, so we infer chorus wave activity from low-altitude SAMPEX observations of MeV electron microbursts for 1996\textendash2001 since microbursts are thought to be cau ...

O\textquoterightBrien, T.; Lorentzen, K.; Mann, I.; Meredith, N.; Blake, J.; Fennell, J.; Looper, M.; Milling, D.; Anderson, R.;

Published by: Journal of Geophysical Research      Published on: 08/2003

YEAR: 2003     DOI: 10.1029/2002JA009784

Local Acceleration due to Wave-Particle Interaction

Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods

We perform a survey of the plasma wave and particle data from the CRRES satellite during 26 geomagnetically disturbed periods to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by Doppler-shifted cyclotron resonant interactions with whistler mode chorus. Relativistic electron flux enhancements associated with moderate or strong storms may be seen over the whole outer zone (3 < L < 7), typically peaking in the range 4 < L < 5, whereas those associated with weak s ...

Meredith, Nigel; Cain, Michelle; Horne, Richard; Thorne, Richard; Summers, D.; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 06/2003

YEAR: 2003     DOI: 10.1029/2002JA009764

Local Acceleration due to Wave-Particle Interaction

2000

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere

The temporal evolution of electron distributions and associated wave activity following substorm injections in the inner magnetosphere are investigated using data from the CRRES satellite. Equatorial electron distributions and concomitant wave spectra outside the plasmapause on the nightside of the Earth are studied as a function of time since injection determined from the auroral-electrojet index (AE). The electron cyclotron harmonic (ECH) wave amplitudes are shown to be very sensitive to small modeling errors in the locati ...

Meredith, Nigel; Horne, Richard; Johnstone, Alan; Anderson, Roger;

Published by: Journal of Geophysical Research      Published on: 06/2000

YEAR: 2000     DOI: 10.1029/2000JA900010

Substorm Injections



  1