Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 14 entries in the Bibliography.
Showing entries from 1 through 14
2021 |
Abstract Reconstruction and prediction of the state of the near-Earth space environment is important for anomaly analysis, development of empirical models and understanding of physical processes. Accurate reanalysis or predictions that account for uncertainties in the associated model and the observations, can be obtained by means of data assimilation. The ensemble Kalman filter (EnKF) is one of the most promising filtering tools for non-linear and high dimensional systems in the context of terrestrial weather prediction. In ... Tibocha, A.; de Wiljes, J.; Shprits, Y; Aseev, N.; Published by: Space Weather Published on: 08/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020SW002672 Kalman Filter; Ensemble Kalman filter; forecasting; Van Allen Probes |
A Comparison of Radial Diffusion Coefficients in 1-D and 3-D Long-Term Radiation Belt Simulations AbstractRadial diffusion is one of the dominant physical mechanisms driving acceleration and loss of radiation belt electrons. A number of parameterizations for radial diffusion coefficients have been developed, each differing in the dataset used. Here, we investigate the performance of different parameterizations by Brautigam and Albert (2000), Brautigam et al. (2005), Ozeke et al. (2014), Ali et al. (2015); Ali et al. (2016); Ali (2016), and Liu et al. (2016) on long-term radiation belt modeling using the Versatile El ... Drozdov, A; Allison, H.; Shprits, Y; Elkington, S.R.; Aseev, N.A.; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028707 Radiation belts; radial diffusion; VERB code; Van Allen Probes |
Abstract Following the end of the Van Allen Probes mission, the Arase satellite offers a unique opportunity to continue in-situ radiation belt and ring current particle measurements into the next solar cycle. In this study we compare spin-averaged flux measurements from the MEPe, HEP-L, HEP-H, and XEP-SSD instruments on Arase with those from the MagEIS and REPT instruments on the Van Allen Probes, calculating Pearson correlation coefficient and the mean ratio of fluxes at L* conjunctions between the spacecraft. Arase and Van ... Szabó-Roberts, Mátyás; Shprits, Yuri; Allison, Hayley; Vasile, Ruggero; Smirnov, Artem; Aseev, Nikita; Drozdov, Alexander; Miyoshi, Yoshizumi; Claudepierre, Seth; Kasahara, Satoshi; Yokota, Shoichiro; Mitani, Takefumi; Takashima, Takeshi; Higashio, Nana; Hori, Tomo; Keika, Kunihiro; Imajo, Shun; Shinohara, Iku; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028929 |
A combined neural network- and physics-based approach for modeling plasmasphere dynamics AbstractIn recent years, feedforward neural networks (NNs) have been successfully applied to reconstruct global plasmasphere dynamics in the equatorial plane. These neural network-based models capture the large-scale dynamics of the plasmasphere, such as plume formation and erosion of the plasmasphere on the nightside. However, their performance depends strongly on the availability of training data. When the data coverage is limited or non-existent, as occurs during geomagnetic storms, the performance of NNs significantly de ... Zhelavskaya, I.; Aseev, N.; Shprits, Y; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028077 plasmasphere; plasma density; neural networks; data assimilation; Kalman Filter; Machine learning; Van Allen Probes |
2020 |
In this study we investigate two distinct loss mechanisms responsible for the rapid dropouts of radiation belt electrons by assimilating data from Van Allen Probes A and B and Geostationary Operational Environmental Satellites (GOES) 13 and 15 into a 3-D diffusion model. In particular, we examine the respective contribution of electromagnetic ion cyclotron (EMIC) wave scattering and magnetopause shadowing for values of the first adiabatic invariant μ ranging from 300 to 3,000 MeV G−1. We inspect the innovation vector ... Cervantes, S.; Shprits, Y; Aseev, N.; Allison, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028208 data assimilation; EMIC waves; magnetopause shadowing; innovation vector; Kalman Filter; radiation belt losses; Van Allen Probes |
The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ... Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027422 Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes |
The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Elec ... Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027422 Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes |
2019 |
Storm Time Depletions of Multi-MeV Radiation Belt Electrons Observed at Different Pitch Angles During geomagnetic storms, the rapid depletion of the high-energy (several MeV) outer radiation belt electrons is the result of loss to the interplanetary medium through the magnetopause, outward radial diffusion, and loss to the atmosphere due to wave-particle interactions. We have performed a statistical study of 110 storms using pitch angle resolved electron flux measurements from the Van Allen Probes mission and found that inside of the radiation belt (L* = 3 - 5) the number of storms that result in depletion of electron ... Drozdov, A; Aseev, N.; Effenberger, F.; Turner, D.; Saikin, A.; Shprits, Y; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019JA027332 EMIC waves; multi-MeV electrons; Radiation belts; Van Allen Probes |
Published by: Space Weather Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018SW002110 data assimilation; inner magnetosphere; Kalman Filter; Reanalysis; ring current; Van Allen Probes |
Models of ring current electron dynamics unavoidably contain uncertainties in boundary conditions, electric and magnetic fields, electron scattering rates, and plasmapause location. Model errors can accumulate with time and result in significant deviations of model predictions from observations. Data assimilation offers useful tools which can combine physics-based models and measurements to improve model predictions. In this study, we systematically analyze performance of the Kalman filter applied to a log-transformed convec ... Published by: Space Weather Published on: 04/2019 YEAR: 2019   DOI: 10.1029/2018SW002110 data assimilation; inner magnetosphere; Kalman Filter; Reanalysis; ring current; Van Allen Probes |
The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth\textquoterights magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high-energy electrons (<400 keV) and inner-zone protons (230-630 keV) in the radiation belts and ring current, the data have been rarely used for inner-magnetospheric science. The current paper presents two ... Smirnov, A.; Kronberg, E.; Latallerie, F.; Daly, P.; Aseev, N.; Shprits, Y; Kellerman, A.; Kasahara, S.; Turner, D.; Taylor, M.; Published by: Space Weather Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018SW001989 electrons; Radiation belts; Solar Cycle; Space weather; Van Allen Probes |
2017 |
Up until recently, signatures of the ultrarelativistic electron loss driven by electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights outer radiation belt have been limited to direct or indirect measurements of electron precipitation or the narrowing of normalized pitch angle distributions in the heart of the belt. In this study, we demonstrate additional observational evidence of ultrarelativistic electron loss that can be driven by resonant interaction with EMIC waves. We analyzed the profiles derived from ... Aseev, N.; Shprits, Y; Drozdov, A; Kellerman, A.; Usanova, M.; Wang, D.; Zhelavskaya, I.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024485 electron loss; EMIC waves; Radiation belts; ultrarelativistic electrons; Van Allen Probes; wave-particle interactions |
EMIC wave parameterization in the long-term VERB code simulation Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE ... Drozdov, A; Shprits, Y; Usanova, M.; Aseev, N.; Kellerman, A.; Zhu, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024389 |
Radial diffusion is one of the dominant physical mechanisms that drives acceleration and loss of the radiation belt electrons, which makes it very important for nowcasting and forecasting space weather models. We investigate the sensitivity of the two parameterizations of the radial diffusion of Brautigam and Albert (2000) and Ozeke et al. (2014) on long-term radiation belt modeling using the Versatile Electron Radiation Belt (VERB). Following Brautigam and Albert (2000) and Ozeke et al. (2014), we first perform 1-D radial d ... Drozdov, A; Shprits, Y; Aseev, N.; Kellerman, A.; Reeves, G.; Published by: Space Weather Published on: 01/2017 YEAR: 2017   DOI: 10.1002/swe.v15.110.1002/2016SW001426 radial diffusion; Radiation belts; Van Allen Probes; VERB code |
1