Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 24 entries in the Bibliography.
Showing entries from 1 through 24
2021 |
Harmonization of RBSP and Arase energetic electron measurements utilizing ESA radiation monitor data Abstract Accurate measurements of trapped energetic electron fluxes are of major importance for the studies of the complex nature of radiation belts and the characterization of space radiation environment. The harmonization of measurements between different instruments increase the accuracy of scientific studies and the reliability of data-driven models that treat the specification of space radiation environment. An inter-calibration analysis of the energetic electron flux measurements of the Magnetic Electron Ion Spectromet ... Sandberg, I.; Jiggens, P.; Evans, H.; Papadimitriou, C.; Aminalragia–Giamini, S.; Katsavrias, Ch.; Boyd, A.; O’Brien, T.; Higashio, N.; Mitani, T.; Shinohara, I.; Miyoshi, Y.; Baker, D.; Daglis, I.; Published by: Space Weather Published on: 04/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020SW002692 Radiation belt; calibration; data harmonization; space radiation environment; energetic electrons; Van Allen Probes |
2020 |
The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versa ... Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027422 Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes |
The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Elec ... Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027422 Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes |
2019 |
Storm Time Depletions of Multi-MeV Radiation Belt Electrons Observed at Different Pitch Angles During geomagnetic storms, the rapid depletion of the high-energy (several MeV) outer radiation belt electrons is the result of loss to the interplanetary medium through the magnetopause, outward radial diffusion, and loss to the atmosphere due to wave-particle interactions. We have performed a statistical study of 110 storms using pitch angle resolved electron flux measurements from the Van Allen Probes mission and found that inside of the radiation belt (L* = 3 - 5) the number of storms that result in depletion of electron ... Drozdov, A; Aseev, N.; Effenberger, F.; Turner, D.; Saikin, A.; Shprits, Y; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019JA027332 EMIC waves; multi-MeV electrons; Radiation belts; Van Allen Probes |
Evaluation of Plasma Properties From Chorus Waves Observed at the Generation Region In this study we present an inversion method which provides thermal plasma population parameters from characteristics of chorus emissions only. Our ultimate goal is to apply this method to ground-based data in order to derive the lower-energy boundary condition for many radiation belt models. The first step is to test the chorus inversion method on in situ data of the Van Allen Probes in the generation region. The density and thermal velocity of energetic electrons (few kiloelectron volts to 100 keV) are derived from frequen ... asz, Lilla; Omura, Yoshiharu; Lichtenberger, J\; Friedel, Reinhard; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2019 YEAR: 2019   DOI: 10.1029/2018JA026337 chorus inversion; Van Allen Probes; Wave-particle interaction |
The Cluster mission, launched in 2000, has produced a large database of electron flux intensity measurements in the Earth\textquoterights magnetosphere by the Research with Adaptive Particle Imaging Detector (RAPID)/ Imaging Electron Spectrometer (IES) instrument. However, due to background contamination of the data with high-energy electrons (<400 keV) and inner-zone protons (230-630 keV) in the radiation belts and ring current, the data have been rarely used for inner-magnetospheric science. The current paper presents two ... Smirnov, A.; Kronberg, E.; Latallerie, F.; Daly, P.; Aseev, N.; Shprits, Y; Kellerman, A.; Kasahara, S.; Turner, D.; Taylor, M.; Published by: Space Weather Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018SW001989 electrons; Radiation belts; Solar Cycle; Space weather; Van Allen Probes |
Simulations of Electron Energization and Injection by BBFs Using High-Resolution LFM MHD Fields We study electron injection and energization by bursty bulk flows (BBFs), by tracing electron trajectories using magnetohydrodynamic (MHD) field output from the Lyon-Fedder-Mobarry (LFM) code. The LFM MHD simulations were performed using idealized solar wind conditions to produce BBFs. We show that BBFs can inject energetic electrons of few to 100 keV from the magnetotatail beyond -24 RE to inward of geosynchronous, while accelerating them in the process. We also show the dependence of energization and injection on the initi ... Eshetu, W.; Lyon, J.; Hudson, M.; Wiltberger, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018JA025789 |
2018 |
Pitch Angle Scattering of Energetic Electrons by BBFs Field line curvature scattering by the magnetic field structure associated with bursty bulk flows (BBFs) has been studied, using simulated output fields from the Lyon-Fedder-Mobarry global magnetohydrodynamic code for specified solar wind input. There are weak magnetic field strength (B) regions adjacent to BBFs observed in the simulations. We show that these regions can cause strong scattering where the first adiabatic invariant changes by several factors within one equatorial crossing of energetic electrons of a few kiloel ... Eshetu, W.; Lyon, J.; Hudson, M.; Wiltberger, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA025788 |
2017 |
Simulated prompt acceleration of multi-MeV electrons by the 17 March 2015 interplanetary shock Prompt enhancement of relativistic electron flux at L = 3-5 has been reported from Van Allen Probes Relativistic Electron Proton Telescope (REPT) measurements associated with the 17 March 2015 interplanetary shock compression of the dayside magnetosphere. Acceleration by \~ 1 MeV is inferred on less than a drift time scale as seen in prior shock compression events, which launch a magetosonic azimuthal electric field impulse tailward. This impulse propagates from the dayside around the flanks accelerating electrons in drift r ... Hudson, Mary; Jaynes, Allison; Kress, Brian; Li, Zhao; Patel, Maulik; Shen, Xiaochen; Thaller, Scott; Wiltberger, Michael; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024445 17 March 2015; MeV electron acceleration; Radiation belt; test-particle simulation; Van Allen Probes |
The 17 March 2015 St. Patrick\textquoterights Day Storm is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. The 17 March 2013 storm also shows similar effects on outer zone electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in ... Li, Zhao; Hudson, Mary; Patel, Maulik; Wiltberger, Michael; Boyd, Alex; Turner, Drew; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2017 YEAR: 2017   DOI: 10.1002/2016JA023846 March 2013; March 2015; radial diffusion; Radiation belt; Van Allen Probes |
Comparing and contrasting dispersionless injections at geosynchronous orbit during a substorm event Particle injections in the magnetosphere transport electrons and ions from the magnetotail to the radiation belts. Here we consider generation mechanisms of \textquotedblleftdispersionless\textquotedblright injections, namely, those with simultaneous increase of the particle flux over a wide energy range. In this study we take advantage of multisatellite observations which simultaneously monitor Earth\textquoterights magnetospheric dynamics from the tail toward the radiation belts during a substorm event. Dispersionless inje ... Kronberg, E.; Grigorenko, E.; Turner, D.; Daly, P.; Khotyaintsev, Y.; Kozak, L.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023551 Acceleration; current wedge; Dipolarization; particle injections; substorm; ULF waves; Van Allen Probes |
Spectra of keV protons related to ion-cyclotron wave packets We use the Fokker-Planck-Kolmogorov equation to study the statistical aspects of stochastic dynamics of the radiation belt (RB) protons driven by nonlinear electromagnetic ion-cyclotron (EMIC) wave packets. We obtain the spectra of keV protons scattered by these waves that show steeping near the gyroresonance, the signature of resonant wave-particle interaction that cannot be described by a simple power law. The most likely mechanism for proton precipitation events in RBs is shown to be nonlinear wave-particle interaction, n ... Khazanov, K.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.; Published by: Physics of Plasmas Published on: 01/2017 YEAR: 2017   DOI: http://dx.doi.org/10.1063/1.4973323 Diffusion; Particle precipitation; protons; Van Allen Probes; wave particle interactions; Wave power |
2016 |
The 17\textendash18 March 2015 storm is the largest geomagnetic storm in the Van Allen Probes era to date. The Lyon-Fedder-Mobarry global MHD model has been run for this event using ARTEMIS data as solar wind input. The ULF wave power spectral density of the azimuthal electric field and compressional magnetic field is analyzed in the 0.5\textendash8.3 mHz range. The lowest three azimuthal modes account for 70\% of the total power during quiet times. However, during high activity, they are not exclusively dominant. The calcul ... Li, Zhao; Hudson, Mary; Paral, Jan; Wiltberger, Michael; Turner, Drew; Published by: Journal of Geophysical Research: Space Physics Published on: 07/2016 YEAR: 2016   DOI: 10.1002/2016JA022508 March 2015; radial diffusion; radial diffusion coefficient; Radiation belt; ULF waves; Van Allen Probes |
2015 |
Magnetohydrodynamic modeling of three Van Allen Probes storms in 2012 and 2013 Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A ... Paral, J.; Hudson, M.; Kress, B.; Wiltberger, M.; Wygant, J.; Singer, H.; Published by: Annales Geophysicae Published on: 08/2015 YEAR: 2015   DOI: 10.5194/angeo-33-1037-2015 |
Field-aligned chorus wave spectral power in Earth\textquoterights outer radiation belt Chorus-type whistler waves are one of the most intense electromagnetic waves generated naturally in the magnetosphere. These waves have a substantial impact on the radiation belt dynamics as they are thought to contribute to electron acceleration and losses into the ionosphere through resonant wave\textendashparticle interaction. Our study is devoted to the determination of chorus wave power distribution on frequency in a wide range of magnetic latitudes, from 0 to 40\textdegree. We use 10 years of magnetic and electric fiel ... Breuillard, H.; Agapitov, O.; Artemyev, A.; Kronberg, E.; Haaland, S.; Daly, P.; Krasnoselskikh, V.; Boscher, D.; Bourdarie, S.; Zaliznyak, Y.; Rolland, G.; Published by: Annales Geophysicae Published on: 01/2015 YEAR: 2015   DOI: 10.5194/angeo-33-583-2015 |
Modeling CME-shock driven storms in 2012 - 2013: MHD-test particle simulations The Van Allen Probes spacecraft have provided detailed observations of the energetic particles and fields environment for CME-shock driven storms in 2012 to 2013 which have now been modeled with MHD-test particle simulations. The Van Allen Probes orbital plane longitude moved from the dawn sector in 2012 to near midnight and pre-noon for equinoctial storms of 2013, providing particularly good measurements of the inductive electric field response to magnetopause compression for the 8 October 2013 CME-shock driven storm. An ab ... Hudson, M.; Paral, J.; Kress, B.; Wiltberger, M.; Baker, D.; Foster, J.; Turner, D.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2015 YEAR: 2015   DOI: 10.1002/2014JA020833 |
2014 |
Various scientific applications and services increasingly demand real-time information on the effects of space weather on Earth\textquoterights atmosphere. In this frame, the Royal Observatory of Belgium (ROB) takes advantage of the dense EUREF Permanent GNSS Network (EPN) to monitor the ionosphere over Europe from the measured delays in the GNSS signals, and provides publicly several derived products. The main ROB products consist of ionospheric vertical Total Electron Content (TEC) maps over Europe and their variability es ... Bergeot, Nicolas; Chevalier, Jean-Marie; Bruyninx, Carine; Pottiaux, Eric; Aerts, Wim; Baire, Quentin; Legrand, Juliette; Defraigne, Pascale; Huang, Wei; Published by: Journal of Space Weather and Space Climate Published on: 09/2014 YEAR: 2014   DOI: 10.1051/swsc/2014028 |
Relativistic electron precipitation events driven by electromagnetic ion-cyclotron waves We adopt a canonical approach to describe the stochastic motion of relativistic belt electrons and their scattering into the loss cone by nonlinear EMIC waves. The estimated rate of scattering is sufficient to account for the rate and intensity of bursty electron precipitation. This interaction is shown to result in particle scattering into the loss cone, forming \~10 s microbursts of precipitating electrons. These dynamics can account for the statistical correlations between processes of energization, pitch angle scattering ... Khazanov, G.; Sibeck, D.; Tel\textquoterightnikhin, A.; Kronberg, T.; Published by: Physics of Plasmas Published on: 08/2014 YEAR: 2014   DOI: 10.1063/1.4892185 Diffusion; Electron scattering; Nonlinear waves; wave-particle interactions; Whistler waves |
Simulated magnetopause losses and Van Allen Probe flux dropouts Three radiation belt flux dropout events seen by the Relativistic Electron Proton Telescope soon after launch of the Van Allen Probes in 2012 (Baker et al., 2013a) have been simulated using the Lyon-Fedder-Mobarry MHD code coupled to the Rice Convection Model, driven by measured upstream solar wind parameters. MHD results show inward motion of the magnetopause for each event, along with enhanced ULF wave power affecting radial transport. Test particle simulations of electron response on 8 October, prior to the strong flux en ... Hudson, M.; Baker, D.; Goldstein, J.; Kress, B.; Paral, J.; Toffoletto, F.; Wiltberger, M.; Published by: Geophysical Research Letters Published on: 02/2014 YEAR: 2014   DOI: 10.1002/2014GL059222 |
2013 |
The Electric Field and Waves (EFW) Instruments on the Radiation Belt Storm Probes Mission The Electric Fields and Waves (EFW) Instruments on the two Radiation Belt Storm Probe (RBSP) spacecraft (recently renamed the Van Allen Probes) are designed to measure three dimensional quasi-static and low frequency electric fields and waves associated with the major mechanisms responsible for the acceleration of energetic charged particles in the inner magnetosphere of the Earth. For this measurement, the instrument uses two pairs of spherical double probe sensors at the ends of orthogonal centripetally deployed booms in t ... Wygant, J.; Bonnell, J; Goetz, K.; Ergun, R.E.; Mozer, F.; Bale, S.D.; Ludlam, M.; Turin, P.; Harvey, P.R.; Hochmann, R.; Harps, K.; Dalton, G.; McCauley, J.; Rachelson, W.; Gordon, D.; Donakowski, B.; Shultz, C.; Smith, C.; Diaz-Aguado, M.; Fischer, J.; Heavner, S.; Berg, P.; Malaspina, D.; Bolton, M.; Hudson, M.; Strangeway, R.; Baker, D.; Li, X.; Albert, J.; Foster, J.C.; Chaston, C.C.; Mann, I.; Donovan, E.; Cully, C.M.; Cattell, C.; Krasnoselskikh, V.; Kersten, K.; Brenneman, A; Tao, J.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: 10.1007/s11214-013-0013-7 |
2012 |
Radiation belt 2D and 3D simulations for CIR-driven storms during Carrington Rotation 2068 As part of the International Heliospheric Year, the Whole Heliosphere Interval, Carrington Rotation 2068, from March 20 to April 16, 2008 was chosen as an internationally coordinated observing and modeling campaign. A pair of solar wind structures identified as Corotating Interaction Regions (CIR), characteristic of the declining phase of the solar cycle and solar minimum, was identified in solar wind plasma measurements from the ACE satellite. Such structures have previously been determined to be geoeffective in producing e ... Hudson, M.; Brito, Thiago; Elkington, Scot; Kress, Brian; Li, Zhao; Wiltberger, Mike; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 07/2012 YEAR: 2012   DOI: 10.1016/j.jastp.2012.03.017 |
2006 |
In an MHD particle simulation of the September 1998 magnetic storm the evolution of the radiation belt electron radial flux profile appears to be diffusive, and diffusion caused by ULF waves has been invoked as the probable mechanism. In order to separate adiabatic and nonadiabatic effects and to investigate the radial diffusion mechanism during this storm, in this work we solve a radial diffusion equation with ULF wave diffusion coefficients and a time-dependent outer boundary condition, and the results are compared with th ... Fei, Yue; Chan, Anthony; Elkington, Scot; Wiltberger, Michael; Published by: Journal of Geophysical Research Published on: 12/2006 YEAR: 2006   DOI: 10.1029/2005JA011211 |
2002 |
MHD/particle simulations of radiation belt dynamics Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking ... ELKINGTON, S; Hudson, M.; Wiltberger, M.J; Lyon, J.; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 04/2002 YEAR: 2002   DOI: 10.1016/S1364-6826(02)00018-4 Shock-Induced Transport. Slot Refilling and Formation of New Belts. |
1999 |
Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relati ... Hudson, M.; Elkington, S.; Lyon, J.; Goodrich, C.; Rosenberg, T.; Published by: Published on: YEAR: 1999   DOI: 10.1029/GM10910.1029/GM109p0171 |
1