## Found 3 entries in the Bibliography.

### Showing entries from 1 through 3

2018 |

We examine the mechanisms responsible for the dropout of energetic electron flux during 31 May \textendash 1 June 2013, using Van Allen Probe (RBSP) electron flux data and simulations with the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. During storm main phase, L-shells at RBSP locations are greater than ~ 8, which are connected to open drift shells. Consequently, diminished electron fluxes were observed over a wide range of energies. The combination of drift shell splitting, magnetopause shadowing and drift l ...
YEAR: 2018 DOI: 10.1002/2017JA024879 CIMI model; drift loss; dropout; magnetopause shadowing; pitch-angle distribution (PAD); RBSP; Van Allen Probes |

2017 |

Numerical simulation studies of the Earth\textquoterights radiation belts are important to understand the acceleration and loss of energetic electrons. The Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model considers the effects of the ring current and plasmasphere on the radiation belts to obtain plausible results. The CIMI model incorporates pitch angle, energy, and cross diffusion of electrons, due to chorus and plasmaspheric hiss waves. These parameters are calculated using statistical wave distribution models of ...
YEAR: 2017 DOI: 10.1002/2017JA024159 Chorus and plasmaspheric hiss wave models; CIMI numerical simulations; Geomagnetic storm events; Radiation belt electron flux enhancements; Van Allen Probes; VLF waves; Wave-particle interaction |

2015 |

Electromagnetic ion cyclotron (EMIC) waves are closely related to precipitating loss of relativistic electrons in the radiation belts, and thereby, a model of the radiation belts requires inclusion of the pitch angle diffusion caused by EMIC waves. We estimated the pitch angle diffusion rates and the corresponding precipitation time scales caused by H and He band EMIC waves using the Tsyganenko 04 (T04) magnetic field model at their probable regions in terms of geomagnetic conditions. The results correspond to enhanced pitch ...
YEAR: 2015 DOI: 10.1002/2014JA020644 EMIC waves; pitch angle diffusion rate; precipitation time scale; quasi-linear theory; realistic field model; Relativistic electron |

1