Bibliography



Found 11 entries in the Bibliography.


Showing entries from 1 through 11


2017

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wa ...

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ...

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; . Y. Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Multipoint observations of energetic particle injections and substorm activity during a conjunction between Magnetospheric Multiscale (MMS) and Van Allen Probes

This study examines multipoint observations during a conjunction between MMS and Van Allen Probes on 07 April 2016 in which a series of energetic particle injections occurred. With complementary data from THEMIS, Geotail, and LANL-GEO (16 spacecraft in total), we develop new insights on the nature of energetic particle injections associated with substorm activity. Despite this case involving only weak substorm activity (max. AE < 300 nT) during quiet geomagnetic conditions in steady, below-average solar wind, a complex serie ...

Turner, D.; Fennell, J.; Blake, J.; Claudepierre, S.; Clemmons, J.; Jaynes, A.; Leonard, T.; Baker, D.; Cohen, I.; Gkioulidou, M.; . Y. Ukhorskiy, A; Mauk, B.; Gabrielse, C.; Angelopoulos, V.; Strangeway, R.; Kletzing, C.; Le Contel, O.; Spence, H.; Torbert, R.; Burch, J.; Reeves, G.;

YEAR: 2017     DOI: 10.1002/2017JA024554

energetic particles; injections; inner magnetosphere; plasma sheet; substorms; Van Allen Probes; wave-particle interactions

Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds ...

Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M.; Ergun, Robert; Russell, C.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.;

YEAR: 2017     DOI: 10.1002/2017GL074895

electric field response; interplanetary shock; magnetopause; Radiation belt; Van Allen Probes

Dominance of high energy (>150 keV) heavy ion intensities in Earth\textquoterights middle to outer magnetosphere

Previous observations have driven the prevailing assumption in the field that energetic ions measured by an instrument using a bare solid state detector (SSD) are predominantly protons. However, new near-equatorial energetic particle observations obtained between 7 and 12 RE during Phase 1 of the Magnetospheric Multiscale (MMS) mission challenge the validity of this assumption. In particular, measurements by the Energetic Ion Spectrometer (EIS) instruments have revealed that the intensities of heavy ion species (specifically ...

Cohen, Ian; Mitchell, Donald; Kistler, Lynn; Mauk, Barry; Anderson, Brian; Westlake, Joseph; Ohtani, Shinichi; Hamilton, Douglas; Turner, Drew; Blake, Bern; Fennell, Joseph; Jaynes, Allison; Leonard, Trevor; Gerrard, Andrew; Lanzerotti, Louis; Allen, Robert; Burch, James;

YEAR: 2017     DOI: 10.1002/2017JA024351

energetic ion composition; magnetospheric ion composition; Magnetospheric Multiscale (MMS); outer magnetosphere; ring current composition; suprathermal ions; Van Allen Probes

2016

Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric Multiscale (MMS) mission

We present multipoint observations of earthward moving dipolarization fronts and energetic particle injections from NASA\textquoterights Magnetospheric Multiscale mission with a focus on electron acceleration. From a case study during a substorm on 02 August 2015, we find that electrons are only accelerated over a finite energy range, from a lower energy threshold at ~7\textendash9 keV up to an upper energy cutoff in the hundreds of keV range. At energies lower than the threshold energy, electron fluxes decrease, potentially ...

Turner, D.; Fennell, J.; Blake, J.; Clemmons, J.; Mauk, B.; Cohen, I.; Jaynes, A.; Craft, J.; Wilder, F.; Baker, D.; Reeves, G.; Gershman, D.; Avanov, L.; Dorelli, J.; Giles, B.; Pollock, C.; Schmid, D.; Nakamura, R.; Strangeway, R.; Russell, C.; Artemyev, A.; Runov, A.; Angelopoulos, V.; Spence, H.; Torbert, R.; Burch, J.;

YEAR: 2016     DOI: 10.1002/2016GL069691

energetic particle injections; magnetotail; Particle acceleration; plasma sheet; reconnection; substorm; Van Allen Probes

A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric Multiscale and Van Allen Probes study of substorm particle injection

An active storm period in June 2015 showed that particle injection events seen sequentially by the four (Magnetospheric Multiscale) MMS spacecraft subsequently fed the enhancement of the outer radiation belt observed by Van Allen Probes mission sensors. Several episodes of significant southward interplanetary magnetic field along with a period of high solar wind speed (Vsw ≳ 500 km/s) on 22 June occurred following strong interplanetary shock wave impacts on the magnetosphere. Key events on 22 June 2015 show that the magnet ...

Baker, D.; Jaynes, A.; Turner, D.; Nakamura, R.; Schmid, D.; Mauk, B.; Cohen, I.; Fennell, J.; Blake, J.; Strangeway, R.; Russell, C.; Torbert, R.; Dorelli, J.; Gershman, D.; Giles, B.; Burch, J.;

YEAR: 2016     DOI: 10.1002/grl.v43.1210.1002/2016GL069643

Magnetic reconnection; magnetospheres; Radiation belts; substorms; Van Allen Probes

2014

Magnetospheric Multiscale Science Mission Profile and Operations

The Magnetospheric Multiscale (MMS) mission and operations are designed to provide the maximum reconnection science. The mission phases are chosen to investigate reconnection at the dayside magnetopause and in the magnetotail. At the dayside, the MMS orbits are chosen to maximize encounters with the magnetopause in regions where the probability of encountering the reconnection diffusion region is high. In the magnetotail, the orbits are chosen to maximize encounters with the neutral sheet, where reconnection is known to occu ...

Fuselier, S.; Lewis, W.; Schiff, C.; Ergun, R.; Burch, J.; Petrinec, S.; Trattner, K.;

YEAR: 2014     DOI: 10.1007/s11214-014-0087-x

Magnetic reconnection; Magnetospheric multiscale; Space mission design; Spacecraft orbits

2013

Preface

The discovery of the Van Allen radiation belts in 1958, starting with data from the United States\textquoteright first two successful orbiting spacecraft, Explorer\textquoterights I and III, was an astounding surprise and represented the founding of what we now call magnetospheric physics. Since that time many spacecraft have traversed the radiation belts en route to other more distant parts of Earth\textquoterights magnetosphere and other worlds beyond Earth\textquoterights orbit. After initial climatological models of the ...

Fox, N.; Burch, J.;

YEAR: 2013     DOI: 10.1007/s11214-013-9997-2

RBSP; Van Allen Probes

The Van Allen Probes Mission

Fox, N.; Burch, J.;

YEAR: 2013     DOI:

RBSP; Van Allen Probes

2004

An extreme distortion of the Van Allen belt arising from the \textquoteleftHallowe\textquoterighten\textquoteright solar storm in 2003

The Earth\textquoterights radiation belts\textemdashalso known as the Van Allen belts1\textemdashcontain high-energy electrons trapped on magnetic field lines2, 3. The centre of the outer belt is usually 20,000\textendash25,000 km from Earth. The region between the belts is normally devoid of particles2, 3, 4, and is accordingly favoured as a location for spacecraft operation because of the benign environment5. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the \textquotele ...

Baker, D.; Kanekal, S.; Li, X.; Monk, S.; Goldstein, J.; Burch, J.;

YEAR: 2004     DOI: 10.1038/nature03116

Shock-Induced Transport. Slot Refilling and Formation of New Belts.



  1