Bibliography



Found 7 entries in the Bibliography.


Showing entries from 1 through 7


2018

Test of Ion Cyclotron Resonance Instability Using Proton Distributions Obtained From Van Allen Probe-A Observations

Anisotropic velocity distributions of protons have long been considered as free energy sources for exciting electromagnetic ion cyclotron (EMIC) waves in the Earth\textquoterights magnetosphere. Here we rigorously calculated the proton anisotropy parameter using proton data obtained from Van Allen Probe-A observations. The calculations are performed for times during EMIC wave events (distinguishing the times immediately after and before EMIC wave onsets) and for times exhibiting no EMIC waves. We find that the anisotropy val ...

Noh, Sung-Jun; Lee, Dae-Young; Choi, Cheong-Rim; Kim, Hyomin; Skoug, Ruth;

YEAR: 2018     DOI: 10.1029/2018JA025385

EMIC waves; Ion cyclotron instability; RBSP; temperature anisotropy; Van Allen Probes

On the role of last closed drift shell dynamics in driving fast losses and Van Allen radiation belt extinction

We present observations of very fast radiation belt loss as resolved using high-time resolution electron flux data from the constellation of Global Positioning System (GPS) satellites. The timescale of these losses is revealed to be as short as \~0.5 - 2 hours during intense magnetic storms, with some storms demonstrating almost total loss on these timescales and which we characterize as radiation belt extinction. The intense March 2013 and March 2015 storms both show such fast extinction, with a rapid recovery, while the Se ...

Olifer, L.; Mann, I.; Morley, S.; Ozeke, L.; Choi, D.;

YEAR: 2018     DOI: 10.1029/2018JA025190

inner magnetosphere; magnetopause shadowing; Radiation belts; Van Allen Probes

2017

Spatial dependence of electromagnetic ion cyclotron waves triggered by solar wind dynamic pressure enhancements

In this paper, using the multisatellite (the Van Allen Probes and two GOES satellites) observations in the inner magnetosphere, we examine two electromagnetic ion cyclotron (EMIC) wave events that are triggered by Pdyn enhancements under prolonged northward interplanetary magnetic field quiet time preconditions. For both events, the impact of enhanced Pdyn causes EMIC waves at multiple points. However, we find a strong spatial dependence that EMIC waves due to enhanced Pdyn impact can occur at multiple points (likely globall ...

Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Kim, H.; Choi, C.; Lee, J.; Hwang, J.;

YEAR: 2017     DOI: 10.1002/2016JA023827

Dynamic pressure; EMIC waves; Van Allen Probes

2016

Van Allen Probes Observations of Electromagnetic Ion Cyclotron Waves Triggered by Enhanced Solar Wind Dynamic Pressure

Magnetospheric compression due to impact of enhanced solar wind dynamic pressure Pdyn has long been considered as one of the generation mechanisms of electromagnetic ion cyclotron (EMIC) waves. With the Van Allen Probe-A observations, we identify three EMIC wave events that are triggered by Pdyn enhancements under prolonged northward IMF quiet time preconditions. They are in contrast to one another in a few aspects. Event 1 occurs in the middle of continuously increasing Pdyn while Van Allen Probe-A is located outside the pl ...

Cho, J.-H.; Lee, D.-Y.; Noh, S.-J.; Shin, D.-K.; Hwang, J.; Kim, K.-C.; Lee, J.; Choi, C.; Thaller, S.; Skoug, R.;

YEAR: 2016     DOI: 10.1002/2016JA022841

Dynamic pressure; EMIC waves; Van Allen Probes

2015

Estimation of pitch angle diffusion rates and precipitation time scales of electrons due to EMIC waves in a realistic field model

Electromagnetic ion cyclotron (EMIC) waves are closely related to precipitating loss of relativistic electrons in the radiation belts, and thereby, a model of the radiation belts requires inclusion of the pitch angle diffusion caused by EMIC waves. We estimated the pitch angle diffusion rates and the corresponding precipitation time scales caused by H and He band EMIC waves using the Tsyganenko 04 (T04) magnetic field model at their probable regions in terms of geomagnetic conditions. The results correspond to enhanced pitch ...

Bin Kang, Suk-; Min, Kyoung-Wook; Fok, Mei-Ching; Hwang, Junga; Choi, Cheong-Rim;

YEAR: 2015     DOI: 10.1002/2014JA020644

EMIC waves; pitch angle diffusion rate; precipitation time scale; quasi-linear theory; realistic field model; Relativistic electron

Simultaneous Pi2 observations by the Van Allen Probes inside and outside the plasmasphere

Plasmaspheric virtual resonance (PVR) model has been proposed as one of source mechanisms for low-latitude Pi2 pulsations. Since PVR-associated Pi2 pulsations are not localized inside the plasmasphere, simultaneous multipoint observations inside and outside the plasmasphere require to test the PVR model. Until now, however, there are few studies using simultaneous multisatellite observations inside and outside the plasmasphere for understanding the radial structure of Pi2 pulsation. In this study, we focus on the Pi2 event o ...

Ghamry, E.; Kim, K.-H.; Kwon, H.-J.; Lee, D.-H.; Park, J.-S.; Choi, J.; Hyun, K.; Kurth, W.; Kletzing, C.; Wygant, J.;

YEAR: 2015     DOI: 10.1002/2015JA021095

Pi2; plasmasphere; Plasmaspheric virtual resonance; Van Allen Probes

Comprehensive analysis of the flux dropout during 7-8 November 2008 storm using multi-satellites observations and RBE model

We investigate an electron flux dropout during a weak storm on 7\textendash8 November 2008, with Dst minimum value being -37 nT. During this period, two clear dropouts were observed on GOES 11 > 2 MeV electrons. We also find a simultaneous dropout in the subrelativistic electrons recorded by Time History of Events and Macroscale Interactions during Substorms probes in the outer radiation belt. Using the Radiation Belt Environment model, we try to reproduce the observed dropout features in both relativistic and subrelativisti ...

Hwang, J.; Choi, E.-J.; Park, J.-S.; Fok, M.-C.; Lee, D.-Y.; Kim, K.-C.; Shin, D.-K.; Usanova, M.; Reeves, G.;

YEAR: 2015     DOI: 10.1002/2015JA021085

atmospheric precipitation; flux dropout; Geomagnetic storm; magneopause shadowing; Radiation belt; RBE model



  1