Found 2 entries in the Bibliography.

Showing entries from 1 through 2


Correlations Between Dispersive Alfvén Wave Activity, Electron Energization, and Ion Outflow in the Inner Magnetosphere

Using measurements from the Van Allen Probes, we show that field-aligned fluxes of electrons energized by dispersive Alfvén waves (DAWs) are prominent in the inner magnetosphere during active conditions. These electrons have preferentially field-aligned anisotropies from 1.2 to >2 at energies ranging from tens of electron volts to several kiloelectron volts (keV), with largest values being coincident with magnetic field dipolarizations. Comparisons reveal that DAW energy densities and Poynting fluxes are strongly correlated ...

Hull, A.; Chaston, C.; Bonnell, J.; Damiano, P.; Wygant, J.; Reeves, G.;

YEAR: 2020     DOI:

dispersive Alfvén waves; field-aligned electrons; inner magnetosphere; oxygen ion outflow; Geomagnetic storms; substorms; Van Allen Probes


Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations

Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qu ...

Damiano, P.A.; Chaston, C.C.; Hull, A.J.; Johnson, J.R.;

YEAR: 2018     DOI: 10.1029/2018GL077748

Alfven waves; field line resonances; kinetic effects; numerical modeling; particle trapping; Radiation belts; Van Allen Probes