Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 9 entries in the Bibliography.
Showing entries from 1 through 9
2021 |
Evening side EMIC waves and related proton precipitation induced by a substorm Abstract We present the results of a multi-point and multi-instrument study of EMIC waves and related energetic proton precipitation during a substorm. We analyze the data from Arase (ERG) and Van Allen Probes (VAP) A and B spacecraft for an event of 16-17 UT on 01 December 2018. VAP-A detected an almost dispersionless injection of energetic protons related to the substorm onset in the night sector. Then the proton injection was detected by VAP-B and further by Arase, as a dispersive enhancement of energetic proton flux. The ... Yahnin, A.; Popova, T.; Demekhov, A.; Lubchich, A.; Matsuoka, A.; Asamura, K.; Miyoshi, Y.; Yokota, S.; Kasahara, S.; Keika, K.; Hori, T.; Tsuchiya, F.; Kumamoto, A.; Kasahara, Y.; Shoji, M.; Kasaba, Y.; Nakamura, S.; Shinohara, I.; Kim, H.; Noh, S.; Raita, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA029091 |
2020 |
Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ... Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2020JA027918 quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes |
Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitud ... Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027918 quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes |
We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ... Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027776 quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes |
2018 |
Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed near ... emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA026058 |
2017 |
Conjugate Ground-Spacecraft Observations of VLF Chorus Elements We present results of simultaneous observations of VLF chorus elements at the ground-based station Kannuslehto in Northern Finland and on board Van Allen Probe A. Visual inspection and correlation analysis of the data reveal one-to-one correspondence of several (at least 12) chorus elements following each other in a sequence. Poynting flux calculated from electromagnetic fields measured by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probe A shows that the waves propag ... Demekhov, A.; Manninen, J.; ik, O.; Titova, E.; Published by: Geophysical Research Letters Published on: 12/2017 YEAR: 2017   DOI: 10.1002/2017GL076139 ground-spacecraft observations; Magnetosphere; Van Allen Probes; VLF chorus |
Using two-hour (from 2300 UT January 25, 2013 to 0100 UT January 26, 2013) measurement data from Van Allen Probes on fluxes of energetic particles, cold plasma density, and magnetic field magnitude, we have calculated the local growth rate of electromagnetic ion\textendashcyclotron and whistler-mode waves for field-aligned propagation. The results of these calculations have been compared with wave spectra observed by the same Van Allen Probe spacecraft. The time intervals when the calculated wave increments are sufficiently ... Lyubchich, A.; Demekhov, A.; Titova, E.; Yahnin, A.; Published by: Geomagnetism and Aeronomy Published on: 02/2017 YEAR: 2017   DOI: 10.1134/S001679321701008X |
2015 |
We report on simultaneous spacecraft and ground-based observations of quasiperiodic VLF emissions and related energetic-electron dynamics. Quasiperiodic emissions in the frequency range 2\textendash6 kHz were observed during a substorm on 25 January 2013 by Van Allen Probe-A and a ground-based station in the Northern Finland. The spacecraft detected the VLF signals near the geomagnetic equator in the night sector at L = 3.0\textendash4.2 when it was inside the plasmasphere. During the satellite motion toward higher latitudes ... Titova, E.; Kozelov, B.; Demekhov, A.; Manninen, J.; Santolik, O.; Kletzing, C.; Reeves, G.; Published by: Geophysical Research Letters Published on: 08/2015 YEAR: 2015   DOI: 10.1002/grl.v42.1510.1002/2015GL064911 energetic electrons; quasiperiodic emissions; Van Allen Probes; VLF waves |
1