Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 6 entries in the Bibliography.
Showing entries from 1 through 6
2021 |
Bayesian Model for HOPE Mass Spectrometers on Van Allen Probes Abstract Space instruments rely heavily on modeling to predict and understand the instrument response, enabling a determination of the capabilities and resolution. The Bayesian approach provides a framework to incorporate prior knowledge and propagate uncertainty to predict the instrument response. We present an empirical Bayes model for the end-to-end performance of the Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometers aboard the Van Allen Probes mission. In this model, we use a combination of external modeling ... Vira, A.; Larsen, B.; Skoug, R.; Fernandes, P.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028862 |
2017 |
The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant io ... Denton, M.; Thomsen, M.; Reeves, G.; Larsen, B.; Henderson, M.; Jordanova, V.; Fernandes, P.; Friedel, R.; Skoug, R.; Funsten, H.; MacDonald, E.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024475 |
The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015 Ionospheric heavy ions play an important role in the dynamics of Earth\textquoterights magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the ... Jahn, J.-M.; Goldstein, J.; Reeves, G.; Fernandes, P.; Skoug, R.; Larsen, B.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024183 geomagnetic activity; inner magnetosphere; plasma composition; plasma density; statistics; Van Allen Probes |
The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activ ... Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024160 inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes |
Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected p ... Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2017 YEAR: 2017   DOI: 10.1002/2016JA023648 |
Accurate knowledge of the plasma fluxes in the inner magnetosphere is essential for both scientific and programmatic applications. Knowledge of the low-energy electrons (approximately tens to hundreds of eV) in the inner magnetosphere is particularly important since these electrons are acted upon by various physical processes, accelerating the electrons to higher energies, and also causing their loss. However, measurements of low-energy electrons are challenging, and as a result, this population has been somewhat neglected p ... Denton, M.; Reeves, G.; Larsen, B.; Friedel, R.; Thomsen, M.; Fernandes, P.; Skoug, R.; Funsten, H.; Sarno-Smith, L.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1002/2016JA023648 |
1