Bibliography



Found 5 entries in the Bibliography.


Showing entries from 1 through 5


2019

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an examp ...

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

2017

Temperature of the plasmasphere from Van Allen Probes HOPE

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

YEAR: 2017     DOI: 10.1002/2016JA023047

plasmasphere; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional math formula drifting Maxwellian and that the potential field and motion of the spacecraft may ...

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023047

plasmasphere; Van Allen Probes

2016

Multispacecraft Observations and Modeling of the June 22/23, 2015 Geomagnetic Storm

The magnetic storm of June 22-23, 2015 was one of the largest in the current solar cycle. We present in situ observations from the Magnetospheric Multiscale Mission (MMS) and the Van Allen Probes (VAP) in the magnetotail, field-aligned currents from AMPERE, and ionospheric flow data from DMSP. Our real-time space weather alert system sent out a \textquotedblleftred alert\textquotedblright, correctly predicting Kp indices greater than 8. We show strong outflow of ionospheric Oxygen, dipolarizations in the MMS magnetometer dat ...

Reiff, P.; Daou, A.; . Y. Sazykin, S; Nakamura, R.; Hairston, M.; Coffey, V.; Chandler, M.; Anderson, B.; Russell, C.; Welling, D.; Fuselier, S.; Genestreti, K.;

YEAR: 2016     DOI: 10.1002/2016GL069154

Dipolarization; Geomagnetic storm; MMS; prediction; simulation; Space weather; Van Allen Probes

2014

Simulation of Van Allen Probes Plasmapause Encounters

We use an E \texttimes B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (RBSP) during 15\textendash20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP da ...

Goldstein, J.; De Pascuale, S.; Kletzing, C.; Kurth, W.; Genestreti, K.; Skoug, R.; Larsen, B.; Kistler, L.; Mouikis, C.; Spence, H.;

YEAR: 2014     DOI: 10.1002/2014JA020252

observations; plasmasphere; residual plume; simulation; Van Allen Probes



  1