Bibliography



Found 25 entries in the Bibliography.


Showing entries from 1 through 25


2020

Global ENA Imaging and In Situ Observations of Substorm Dipolarization on 10 August 2016

Abstract This paper presents the first combined use of data from Magnetospheric Multiscale (MMS), Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), and Van Allen Probes (RBSP) to study the 10 August 2016 magnetic dipolarization. We report the first correlation of MMS tail observations with TWINS energetic neutral atom (ENA) images of the ring current (RC). We analyze 15-min, 1° TWINS 2 images in 1–50 keV energy bins. To characterize the high-altitude RC we extract peak ENA flux from L= 2.5 to 5 in the postmid ...

Goldstein, J.; Valek, P.; McComas, D.; Redfern, J.; Spence, H.; Skoug, R.; Larsen, B.; Reeves, G.; Nakamura, R.;

YEAR: 2020     DOI: 10.1029/2019JA027733

substorm dipolarization; cross-scale physics; imaging; multipoint in situ; ring current; Van Allen Probes

The Role of the Dynamic Plasmapause in Outer Radiation Belt Electron Flux Enhancement

Abstract The plasmasphere is a highly dynamic toroidal region of cold, dense plasma around Earth. Plasma waves exist both inside and outside this region and can contribute to the loss and acceleration of high energy outer radiation belt electrons. Early observational studies found an apparent correlation on long time scales between the observed inner edge of the outer radiation belt and the modeled innermost plasmapause location. More recent work using high-resolution Van Allen Probes data has found a more complex relationsh ...

Bruff, M.; Jaynes, A.; Zhao, H.; Goldstein, J.; Malaspina, D.; Baker, D.; Kanekal, S.; Spence, H.; Reeves, G.;

YEAR: 2020     DOI: 10.1029/2020GL086991

Plasmapause; outer radiation belt; Magnetosphere; chorus waves; Van Allen Probes

Determining plasmaspheric density from the upper hybrid resonance and from the spacecraft potential: How do they compare?

The plasmasphere is a critical region of the magnetosphere. It is important for the evolution of Earth\textquoterights radiation belts. Waves in the plasmasphere interior (hiss) and vicinity (EMIC, chorus) help control the acceleration and loss of radiation belt particles. Thus, understanding the extent, structure, content, and dynamics of the plasmasphere is crucial to understanding radiation belt losses. The Van Allen Probes mission uses two methods to determine the total plasma density. First, the upper hybrid resonance ( ...

Jahn, J.-M.; Goldstein, J.; Kurth, W.S.; Thaller, S.; De Pascuale, S.; Wygant, J.; Reeves, G.D.; Spence, H.E.;

YEAR: 2020     DOI: 10.1029/2019JA026860

cold plasma density; plasmasphere; spacecraft charging; Van Allen Probes; wave resonances

2019

Temperature Dependence of Plasmaspheric Ion Composition

We analyze a database of Dynamics Explorer-1 (DE-1) Retarding Ion Mass Spectrometer densities and temperatures to yield the first explicit measure of how cold ion concentration depends on temperature. We find that cold H+ and He+ concentrations have very weak dependence on temperature, but cold O+ ion concentration increases steeply as these ions become warmer. We demonstrate how this result can aid in analyzing composition data from other satellites without spacecraft potential mitigation, by applying the result to an examp ...

Goldstein, J.; Gallagher, D.; Craven, P.; Comfort, R.; Genestreti, K.; Mouikis, C.; Spence, H.; Kurth, W.; Wygant, J.; Skoug, R.; Larsen, B.; Reeves, G.; De Pascuale, S.;

YEAR: 2019     DOI: 10.1029/2019JA026822

composition; plasmasphere: ion; temperature; Van Allen Probes

Epoch-Based Model for Stormtime Plasmapause Location

The output of a plasmapause test particle (PTP) code is used to formulate a new epoch-based plasmapause model. The PTP simulation is run for an ensemble of 60 storms spanning 3 September 2012 to 28 September 2017 and having peak Dst of -60 nT or less, yielding over 7 million model plasmapause locations. Events are automatically identified and epoch times calculated relative to the respective storm peaks. Epoch analysis of the simulated plasmapause is demonstrated to be an effective method to reveal the dynamical phases of pl ...

Goldstein, J.; De Pascuale, S.; Kurth, W.;

YEAR: 2019     DOI: 10.1029/2018JA025996

epoch-based model; Plasmapause; plasmasphere; plume; Van Allen Probes

2018

Simulations of Van Allen Probes Plasmaspheric Electron Density Observations

We simulate equatorial plasmaspheric electron densities using a physics-based model (Cold PLasma, CPL; used in the ring current-atmosphere interactions model) of the source and loss processes of refilling and erosion driven by empirical inputs. The performance of CPL is evaluated against in situ measurements by the Van Allen Probes (Radiation Belt Storm Probes) for two events: the 31 May to 5 June and 15 to 20 January 2013 geomagnetic storms observed in the premidnight and postmidnight magnetic local time (MLT) sectors, resp ...

De Pascuale, S.; Jordanova, V.; Goldstein, J.; Kletzing, C.; Kurth, W.; Thaller, S.; Wygant, J.;

YEAR: 2018     DOI: 10.1029/2018JA025776

convection; observations; plasmasphere; RBSP; simulation; Van Allen Probes

Longitudinal Structure of Oxygen Torus in the Inner Magnetosphere: Simultaneous Observations by Arase and Van Allen Probe A

Simultaneous observations of the magnetic field and plasma waves made by the Arase and Van Allen Probe A satellites at different magnetic local time (MLT) enable us to deduce the longitudinal structure of an oxygen torus for the first time. During 04:00\textendash07:10 UT on 24 April 2017, Arase flew from L = 6.2 to 2.0 in the morning sector and detected an enhancement of the average plasma mass up to ~3.5 amu around L = 4.9\textendash5.2 and MLT = 5.0 hr, implying that the plasma consists of approximately 15\% O+ ions. Prob ...

e, M.; Matsuoka, A.; Kumamoto, A.; Kasahara, Y.; Goldstein, J.; Teramoto, M.; Tsuchiya, F.; Matsuda, S.; Shoji, M.; Imajo, S.; Oimatsu, S.; Yamamoto, K.; Obana, Y.; Nomura, R.; Fujimoto, A.; Shinohara, I.; Miyoshi, Y.; Kurth, W.; Kletzing, C.; Smith, C.; MacDowall, R.;

YEAR: 2018     DOI: 10.1029/2018GL080122

Arase satellite; Geomagnetic storm; inner magnetosphere; oxygen torus; simultaneous observation; Van Allen Probes; Van Allen Probes satellite

2017

The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015

Ionospheric heavy ions play an important role in the dynamics of Earth\textquoterights magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the ...

Jahn, J.-M.; Goldstein, J.; Reeves, G.; Fernandes, P.; Skoug, R.; Larsen, B.; Spence, H.;

YEAR: 2017     DOI: 10.1002/2017JA024183

geomagnetic activity; inner magnetosphere; plasma composition; plasma density; statistics; Van Allen Probes

The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey

The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activ ...

Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David;

YEAR: 2017     DOI: 10.1002/2017JA024160

inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes

Storm time empirical model of O + and O 6+ distributions in the magnetosphere

Recent studies have utilized different charge states of oxygen ions as a tracer for the origins of plasma populations in the magnetosphere of Earth, using O+ as an indicator of ionospheric-originating plasma and O6+ as an indicator of solar wind-originating plasma. These studies have correlated enhancements in O6+ to various solar wind and geomagnetic conditions to characterize the dominant solar wind injection mechanisms into the magnetosphere but did not include analysis of the temporal evolution of these ions. A sixth-ord ...

Allen, R.; Livi, S.; Vines, S.; Goldstein, J.; Cohen, I.; Fuselier, S.; Mauk, B.; Spence, H.;

YEAR: 2017     DOI: 10.1002/2017JA024245

MMS mission; Polar mission; solar wind injection; storm time dynamics; Van Allen Probes; Van Allen Probes mission

Temperature of the plasmasphere from Van Allen Probes HOPE

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

YEAR: 2017     DOI: 10.1002/2016JA023047

plasmasphere; Van Allen Probes

Temperature of the plasmasphere from Van Allen Probes HOPE

We introduce two novel techniques for estimating temperatures of very low energy space plasmas using, primarily, in situ data from an electrostatic analyzer mounted on a charged and moving spacecraft. The techniques are used to estimate proton temperatures during intervals where the bulk of the ion plasma is well below the energy bandpass of the analyzer. Both techniques assume that the plasma may be described by a one-dimensional math formula drifting Maxwellian and that the potential field and motion of the spacecraft may ...

Genestreti, K.; Goldstein, J.; Corley, G.; Farner, W.; Kistler, L.; Larsen, B.; Mouikis, C.; Ramnarace, C.; Skoug, R.; Turner, N.;

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023047

plasmasphere; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0. ...

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

Cross-scale observations of the 2015 St. Patrick\textquoterights day storm: THEMIS, Van Allen Probes, and TWINS

We present cross-scale magnetospheric observations of the 17 March 2015 (St. Patrick\textquoterights Day) storm, by Time History of Events and Macroscale Interactions during Substorms (THEMIS), Van Allen Probes (Radiation Belt Storm Probes), and Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS), plus upstream ACE/Wind solar wind data. THEMIS crossed the bow shock or magnetopause 22 times and observed the magnetospheric compression that initiated the storm. Empirical models reproduce these boundary locations within 0. ...

Goldstein, J.; Angelopoulos, V.; De Pascuale, S.; Funsten, H.; Kurth, W.; LLera, K.; McComas, D.; Perez, J.; Reeves, G.; Spence, H.; Thaller, S.; Valek, P.; Wygant, J.;

YEAR: 2017     DOI: 10.1002/jgra.v122.110.1002/2016JA023173

Heliophysics System Observatory; Modeling; multimission; THEMIS; TWINS; Van Allen Probes

2016

The relationship between the plasmapause and outer belt electrons

We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ...

Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.;

YEAR: 2016     DOI: 10.1002/2016JA023046

Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes

Radiation belt electron acceleration during the 17 March 2015 geomagnetic storm: Observations and simulations

Various physical processes are known to cause acceleration, loss, and transport of energetic electrons in the Earth\textquoterights radiation belts, but their quantitative roles in different time and space need further investigation. During the largest storm over the past decade (17 March 2015), relativistic electrons experienced fairly rapid acceleration up to ~7 MeV within 2 days after an initial substantial dropout, as observed by Van Allen Probes. In the present paper, we evaluate the relative roles of various physical p ...

Li, W.; Ma, Q.; Thorne, R.; Bortnik, J.; Zhang, X.-J.; Li, J.; Baker, D.; Reeves, G.; Spence, H.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Kanekal, S.; Angelopoulos, V.; Green, J.; Goldstein, J.;

YEAR: 2016     DOI: 10.1002/jgra.v121.610.1002/2016JA022400

chorus-driven local acceleration; Electron acceleration; radial diffusion; Van Allen Probes

2015

First joint in situ and global observations of the medium-energy oxygen and hydrogen in the inner magnetosphere

We present the first simultaneous observations of the in situ ions and global Energetic Neutral Atom (ENA) images of the composition-separated, medium-energy (~1\textendash50 keV) particle populations of the inner magnetosphere. The ENA emissions are mapped into L shell/magnetic local time space based on the exospheric density along the line of sight (LOS). The ENA measurement can then be scaled to determine an average ion flux along a given LOS. The in situ ion flux tends to be larger than the scaled ENAs at the same local ...

Valek, P.; Goldstein, J.; Jahn, J.-M.; McComas, D.; Spence, H.;

YEAR: 2015     DOI: 10.1002/2015JA021151

ENAs; oxygen; storms; TWINS; Van Allen Probes

Observations of coincident EMIC wave activity and duskside energetic electron precipitation on 18-19 January 2013

Electromagnetic ion cyclotron (EMIC) waves have been suggested to be a cause of radiation belt electron loss to the atmosphere. Here simultaneous, magnetically conjugate measurements are presented of EMIC wave activity, measured at geosynchronous orbit and on the ground, and energetic electron precipitation, seen by the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL) campaign, on two consecutive days in January 2013. Multiple bursts of precipitation were observed on the duskside of the magnetosphere at ...

Blum, L.; Halford, A.; Millan, R.; Bonnell, J.; Goldstein, J.; Usanova, M.; Engebretson, M.; Ohnsted, M.; Reeves, G.; Singer, H.; Clilverd, M.; Li, X.;

YEAR: 2015     DOI: 10.1002/2015GL065245

electron precipitation; EMIC waves; Radiation belts; Van Allen Probes

Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss

Over 40 years ago it was suggested that electron loss in the region of the radiation belts that overlaps with the region of high plasma density called the plasmasphere, within four to five Earth radii1, 2, arises largely from interaction with an electromagnetic plasma wave called plasmaspheric hiss3, 4, 5. This interaction strongly influences the evolution of the radiation belts during a geomagnetic storm, and over the course of many hours to days helps to return the radiation-belt structure to its \textquoteleftquiet\textqu ...

Breneman, A.; Halford, A.; Millan, R.; McCarthy, M.; Fennell, J.; Sample, J.; Woodger, L.; Hospodarsky, G.; Wygant, J.; Cattell, C.; Goldstein, J.; Malaspina, D.; Kletzing, C.;

YEAR: 2015     DOI: 10.1038/nature14515

Magnetospheric physics; Van Allen Probes

2014

Investigation of EMIC wave scattering as the cause for the BARREL January 17, 2013 relativistic electron precipitation event: a quantitative comparison of simulation with observations

Electromagnetic ion cyclotron (EMIC) waves were observed at multiple observatory locations for several hours on 17 January 2013. During the wave activity period, a duskside relativistic electron precipitation (REP) event was observed by one of the BARREL balloons, and was magnetically mapped close to GOES-13. We simulate the relativistic electron pitch-angle diffusion caused by gyroresonant interactions with EMIC waves using wave and particle data measured by multiple instruments on board GOES-13 and the Van Allen Probes. We ...

Li, Zan; Millan, Robyn; Hudson, Mary; Woodger, Leslie; Smith, David; Chen, Yue; Friedel, Reiner; Rodriguez, Juan; Engebretson, Mark; Goldstein, Jerry; Fennell, Joseph; Spence, Harlan;

YEAR: 2014     DOI: 10.1002/2014GL062273

BARREL; EMIC waves; GOES; pitch angle diffusion; RBSP; relativistic electron precipitation; Van Allen Probes

Simulation of Van Allen Probes Plasmapause Encounters

We use an E \texttimes B-driven plasmapause test particle (PTP) simulation to provide global contextual information for in situ measurements by the Van Allen Probes (RBSP) during 15\textendash20 January 2013. During 120 h of simulation time beginning on 15 January, geomagnetic activity produced three plumes. The third and largest simulated plume formed during enhanced convection on 17 January, and survived as a rotating, wrapped, residual plume for tens of hours. To validate the simulation, we compare its output with RBSP da ...

Goldstein, J.; De Pascuale, S.; Kletzing, C.; Kurth, W.; Genestreti, K.; Skoug, R.; Larsen, B.; Kistler, L.; Mouikis, C.; Spence, H.;

YEAR: 2014     DOI: 10.1002/2014JA020252

observations; plasmasphere; residual plume; simulation; Van Allen Probes

Simulated magnetopause losses and Van Allen Probe flux dropouts

Three radiation belt flux dropout events seen by the Relativistic Electron Proton Telescope soon after launch of the Van Allen Probes in 2012 (Baker et al., 2013a) have been simulated using the Lyon-Fedder-Mobarry MHD code coupled to the Rice Convection Model, driven by measured upstream solar wind parameters. MHD results show inward motion of the magnetopause for each event, along with enhanced ULF wave power affecting radial transport. Test particle simulations of electron response on 8 October, prior to the strong flux en ...

Hudson, M.; Baker, D.; Goldstein, J.; Kress, B.; Paral, J.; Toffoletto, F.; Wiltberger, M.;

YEAR: 2014     DOI: 10.1002/2014GL059222

Van Allen Probes

2013

Science Goals and Overview of the Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA\textquoterights Radiation Belt Storm Probes (RBSP) Mission

The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ...

Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.;

YEAR: 2013     DOI: DOI: 10.1007/s11214-013-0007-5

RBSP; Van Allen Probes

A Long-Lived Relativistic Electron Storage Ring Embedded in Earth\textquoterights Outer Van Allen Belt

Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly ...

Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.;

YEAR: 2013     DOI: 10.1126/science.1233518

RBSP; Van Allen Probes

2004

An extreme distortion of the Van Allen belt arising from the \textquoteleftHallowe\textquoterighten\textquoteright solar storm in 2003

The Earth\textquoterights radiation belts\textemdashalso known as the Van Allen belts1\textemdashcontain high-energy electrons trapped on magnetic field lines2, 3. The centre of the outer belt is usually 20,000\textendash25,000 km from Earth. The region between the belts is normally devoid of particles2, 3, 4, and is accordingly favoured as a location for spacecraft operation because of the benign environment5. Here we report that the outer Van Allen belt was compressed dramatically by a solar storm known as the \textquotele ...

Baker, D.; Kanekal, S.; Li, X.; Monk, S.; Goldstein, J.; Burch, J.;

YEAR: 2004     DOI: 10.1038/nature03116

Shock-Induced Transport. Slot Refilling and Formation of New Belts.



  1