Found 4 entries in the Bibliography.

Showing entries from 1 through 4


Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ...

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; . Y. Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm


Global MHD test particle simulations of solar energetic electron trapping in the Earth\textquoterights radiation belts

Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth\textquoterights inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt ...


YEAR: 2008     DOI: 10.1016/j.jastp.2008.05.018

Shock-Induced Transport. Slot Refilling and Formation of New Belts.


Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement

[1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth\textquoterights inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for \~10 years. More recently, at the end of solar cycle 23, a number of vi ...

Kress, B.; Hudson, M.; Looper, M.; Albert, J.; Lyon, J.; Goodrich, C.;

YEAR: 2007     DOI: 10.1029/2006JA012218

Shock-Induced Transport. Slot Refilling and Formation of New Belts.


Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations

The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relati ...

Hudson, M.; Elkington, S.; Lyon, J.; Goodrich, C.; Rosenberg, T.;

YEAR: 1999     DOI: 10.1029/GM10910.1029/GM109p0171