Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 4 entries in the Bibliography.
Showing entries from 1 through 4
2017 |
We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ... Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024550 dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm |
2008 |
Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of View the MathML source electrons in the Earth\textquoterights inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt ... KRESS, B; Hudson, M.; LOOPER, M; LYON, J; GOODRICH, C; Published by: Journal of Atmospheric and Solar-Terrestrial Physics Published on: 11/2008 YEAR: 2008   DOI: 10.1016/j.jastp.2008.05.018 Shock-Induced Transport. Slot Refilling and Formation of New Belts. |
2007 |
[1] Prior to 2003, there are two known cases where ultrarelativistic (≳10 MeV) electrons appeared in the Earth\textquoterights inner zone radiation belts in association with high speed interplanetary shocks: the 24 March 1991 and the less well studied 21 February 1994 storms. During the March 1991 event electrons were injected well into the inner zone on a timescale of minutes, producing a new stably trapped radiation belt population that persisted for \~10 years. More recently, at the end of solar cycle 23, a number of vi ... Kress, B.; Hudson, M.; Looper, M.; Albert, J.; Lyon, J.; Goodrich, C.; Published by: Journal of Geophysical Research Published on: 09/2007 YEAR: 2007   DOI: 10.1029/2006JA012218 Shock-Induced Transport. Slot Refilling and Formation of New Belts. |
1999 |
Simulation of Radiation Belt Dynamics Driven by Solar Wind Variations The rapid rise of relativistic electron fluxes inside geosynchronous orbit during the January 10-11, 1997, CME-driven magnetic cloud event has been simulated using a relativistic guiding center test particle code driven by out-put from a 3D global MHD simulation of the event. A comparison can be made of this event class, characterized by a moderate solar wind speed (< 600 km/s), and those commonly observed at the last solar maximum with a higher solar wind speed and shock accelerated solar energetic proton component. Relati ... Hudson, M.; Elkington, S.; Lyon, J.; Goodrich, C.; Rosenberg, T.; Published by: Published on: YEAR: 1999   DOI: 10.1029/GM10910.1029/GM109p0171 |
1