Bibliography



Found 90 entries in the Bibliography.


Showing entries from 1 through 50


2021

A Multi-instrument Study of a Dipolarization Event in the Inner Magnetosphere

Abstract A dipolarization of the background magnetic field was observed during a conjunction of the Magnetospheric Multiscale (MMS) spacecraft and Van Allen Probe B on 22 September 2018. The spacecraft were located in the inner magnetosphere at L ∼ 6 − 7 just before midnight magnetic local time (MLT). The radial separation between MMS and Probe B was ∼ 1RE. Gradual dipolarization or an increase of the northward component BZ of the background field occurred on a timescale of minutes. Exploration of energization and Radi ...

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Cohen, I.; Cooper, M.; Ergun, R.; Farrugia, C.; Fennell, J.; Fuselier, S.; Gkioulidou, M.; Khotyaintsev, Yu.; Lindqvist, P.-A.; Matsuoka, A.; Russell, C.; Shoji, M.; Strangeway, R.; Turner, D.; Vaith, H.; Wygant, J.;

YEAR: 2021     DOI: https://doi.org/10.1029/2021JA029294

Dipolarization; inner magnetosphere; Multiple Scale Dynamics; Van Allen Probes

Energetic electron detection packages on board Chinese navigation satellites in MEO

Abstract Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications. In this paper, the energetic electron detection package (EEDP) deployed on three Chinese navigation satellites in medium Earth orbit (MEO) is reviewed. The instrument was developed by the space science payload team led by Peking University. The EEDP includes a pinhole medium-energy electron spectrometer (MES), a high-energy electron detector (HED) based on ΔE-E ...

YuGuang, Ye; Hong, Zou; Qiu-Gang, Zong; HongFei, Chen; JiQing, Zou; WeiHong, Shi; XiangQian, Yu; WeiYing, Zhong; YongFu, Wang; YiXin, Hao; ZhiYang, Liu; XiangHong, Jia; Bo, Wang; XiaoPing, Yang; XiaoYun, Hao;

YEAR: 2021     DOI: https://doi.org/10.26464/epp2021021

Radiation belts; energetic electron detection; Pin-hole technology; Chinese navigation satellites; MEO; internal charging; Van Allen Probes

Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on Van Allen Probes observations

Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant ...

Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029057

Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes

Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on Van Allen Probes observations

Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant ...

Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029057

Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes

Empirical loss timescales of slot region electrons due to plasmaspheric hiss based on Van Allen Probes observations

Abstract Based on Van Allen Probes observations, in this study we perform a statistical analysis of the spectral intensities of plasmaspheric hiss at L-shells of 1.8 – 3.0 in the slot region. Our results show that slot region hiss power intensifies with a strong day-night asymmetry as the level of substorm activity or L-shell increases. Using the statistical spectral profiles of plasmaspheric hiss, we calculate the drift- and bounce-averaged electron pitch angle diffusion coefficients and subsequently obtain the resultant ...

Zhu, Qi; Cao, Xing; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Fu, Song; Summers, Danny; Hua, Man; Lou, Yuequn; Ma, Xin; Guo, YingJie; Guo, DeYu; Zhang, Wenxun;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA029057

Plasmaspheric Hiss; Slot region; Electron loss timescales; Van Allen Probes

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

Prediction of Dynamic Plasmapause Location Using a Neural Network

Abstract As a common boundary layer that distinctly separates the regions of high-density plasmasphere and low-density plasmatrough, the plasmapause is essential to comprehend the dynamics and variability of the inner magnetosphere. Using the machine learning framework Pytorch and high-quality Van Allen Probes data set, we develop a neural network model to predict the global dynamic variation of the plasmapause location, along with the identification of 6537 plasmapause crossing events during the period from 2012 to 2017. To ...

Guo, DeYu; Fu, Song; Xiang, Zheng; Ni, Binbin; Guo, YingJie; Feng, Minghang; Guo, JianGuang; Hu, Zejun; Gu, Xudong; Zhu, Jianan; Cao, Xing; Wang, Qi;

YEAR: 2021     DOI: https://doi.org/10.1029/2020SW002622

Plasmapause; neural network; Van Allen Probes; space weather forecast

2020

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

Statistical Distribution of Bifurcation of Earth s Inner Energetic Electron Belt at tens of keV

We present a survey of the bifurcation of the Earth s energetic electron belt (tens of keV) using 6-year measurements from Van Allen Probes. The inner energetic electron belt usually presents one-peak radial structure with high flux intensity at L < ∼2.5, which however can be bifurcated to exhibit a double-peak radial structure. By automatically identifying the events of bifurcation based on RBSPICE data, we find that the bifurcation is mostly observed at ∼30–100 keV with a local flux minimum at L=∼2.0–∼2.3 under ...

Hua, Man; Ni, Binbin; Li, Wen; Ma, Qianli; Gu, Xudong; Fu, Song; Cao, Xing; Guo, YingJie; Liu, Yangxizi;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL091242

Inner electron radiation belt; Flux bifurcation; VLF transmitter waves; Statistical distribution; Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm

Radiation belt electron dropouts indicate electron flux decay to the background level during geomagnetic storms, which is commonly attributed to the effects of wave-induced pitch angle scattering and magnetopause shadowing. To investigate the loss mechanisms of radiation belt electron dropouts triggered by a solar wind dynamic pressure pulse event on 12 September 2014, we comprehensively analyzed the particle and wave measurements from Van Allen Probes. The dropout event was divided into three periods: before the storm, the ...

Ma, Xin; Xiang, Zheng; Ni, Binbin; Fu, Song; Cao, Xing; Hua, Man; Guo, DeYu; Guo, YingJie; Gu, Xudong; Liu, ZeYuan; Zhu, Qi;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020060

radiation belt electron flux dropouts; Geomagnetic storm; electron phase space density; magnetopause shadowing; wave–particle interactions; Van Allen Probes

Alpha Transmitter Signal Reflection and Triggered Emissions

Russian Alpha radio navigation system (RSDN-20) emits F1 = 11.9 kHz signals into the magnetosphere which propagate as whistler mode waves. Observed by waveform continuous burst mode from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on Van Allen Probes, a case is presented and featured with ducted propagation, multiple reflections, and triggered emissions. Both risers and fallers appear in the triggered emissions. We use a ray tracing method to demonstrate ducted propagation, which has a s ...

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; An, Xin; Horne, Richard;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090165

VLF transmitter; ducted propagation; triggered emission; Van Allen Probes

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensit ...

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensit ...

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements

Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensit ...

Wang, JingZhi; Zhu, Qi; Gu, Xudong; Fu, Song; Guo, JianGuang; Zhang, Xiaoxin; Yi, Juan; Guo, YingJie; Ni, Binbin; Xiang, Zheng;

YEAR: 2020     DOI: https://doi.org/10.26464/epp2020034

hiss; Van Allen Probes; global model

2019

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

Identifying STEVE\textquoterights Magnetospheric Driver Using Conjugate Observations in the Magnetosphere and on the Ground

The magnetospheric driver of strong thermal emission velocity enhancement (STEVE) is investigated using conjugate observations when Van Allen Probes\textquoteright footprint directly crossed both STEVE and stable red aurora (SAR) arc. In the ionosphere, STEVE is associated with subauroral ion drift features, including electron temperature peak, density gradient, and westward ion flow. The SAR arc at lower latitudes corresponds to regions inside the plasmapause with isotropic plasma heating, which causes redline-only SAR emis ...

Chu, Xiangning; Malaspina, David; Gallardo-Lacourt, Bea; Liang, Jun; Andersson, Laila; Ma, Qianli; Artemyev, Anton; Liu, Jiang; Ergun, Robert; Thaller, Scott; Akbari, Hassanali; Zhao, Hong; Larsen, Brian; Reeves, Geoffrey; Wygant, John; Breneman, Aaron; Tian, Sheng; Connors, Martin; Donovan, Eric; Archer, William; MacDonald, Elizabeth;

YEAR: 2019     DOI: 10.1029/2019GL082789

aurora; kinetic Alfven wave; Plasmapause; STEVE; subauroral ion drift; table red auroral arc; Van Allen Probes

Wave Normal Angle Distribution of Fast Magnetosonic Waves: A Survey of Van Allen Probes EMFISIS Observations

Using Van Allen Probe Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) wave observations from September 2012 to May 2018, we statistically investigate the distributions of power-weighted wave normal angle (WNA) of fast magnetosonic (MS) waves from L = 2\textendash6 within \textpm15\textdegree geomagnetic latitudes. The spatial distributions show that the MS WNAs are mainly confined within 87\textendash89\textdegree near the geomagnetic equator and decrease with increasing magnetic latitude. Furth ...

Zou, Zhengyang; Zuo, Pingbing; Ni, Binbin; Wei, Fengsi; Zhao, Zhengyu; Cao, Xing; Fu, Song; Gu, Xudong;

YEAR: 2019     DOI: 10.1029/2019JA026556

Empirical Model; Fast Magnetosonic Waves; latitudinal dependence; power-weighted wave normal angles; spatial distributions; Van Allen Probes

Statistical analysis on plasmatrough exohiss waves from the Van Allen Probes

In this study using Van Allen Probe wave observations we investigate the statistical properties of exohiss waves, which are structureless whistler mode waves observed outside the plasmapause. The exohiss waves are identified based on the cold electron number density, frequency distribution, ellipticity, and wave normal angle. The statistical analysis on exohiss wave properties shows that exohiss waves prefer to occur over 3

Zhu, Hui; Gu, Wenyao; Chen, Lunjin;

YEAR: 2019     DOI: 10.1029/2018JA026359

Exohiss; leaking process; Van Allen Probes

Statistical Properties of Hiss in Plasmaspheric Plumes and Associated Scattering Losses of Radiation Belt Electrons

Whistler mode hiss acts as an important loss mechanism contributing to the radiation belt electron dynamics inside the plasmasphere and plasmaspheric plumes. Based on Van Allen Probes observations from September 2012 to December 2015, we conduct a detailed analysis of hiss properties in plasmaspheric plumes and illustrate that corresponding to the highest occurrence probability of plumes at L = 5.0\textendash6.0 and MLT = 18\textendash21, hiss emissions occur concurrently with a rate of >~80\%. Plume hiss can efficiently sca ...

Zhang, Wenxun; Ni, Binbin; Huang, He; Summers, Danny; Fu, Song; Xiang, Zheng; Gu, Xudong; Cao, Xing; Lou, Yuequn; Hua, Man;

YEAR: 2019     DOI: 10.1029/2018GL081863

Electron scattering; plasmaspheric plumes; plume hiss; Van Allen Probes

Energetic Electron Precipitation: Multievent Analysis of Its Spatial Extent During EMIC Wave Activity

Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC-driven precipitation, which occurred near the dusk sector observed by multiple Low-Earth-Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred ...

Capannolo, L.; Li, W.; Ma, Q.; Shen, X.-C.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Engebretson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Spence, H.; Reeves, G.; Raita, T.;

YEAR: 2019     DOI: 10.1029/2018JA026291

EMIC waves; energetic electron precipitation; pitch angle scattering; quasi-linear theory; radiation belts dropouts; Van Allen Probes

Quantification of Energetic Electron Precipitation Driven by Plume Whistler Mode Waves, Plasmaspheric Hiss, and Exohiss

Whistler mode waves are important for precipitating energetic electrons into Earth\textquoterights upper atmosphere, while the quantitative effect of each type of whistler mode wave on electron precipitation is not well understood. In this letter, we evaluate energetic electron precipitation driven by three types of whistler mode waves: plume whistler mode waves, plasmaspheric hiss, and exohiss observed outside the plasmapause. By quantitatively analyzing three conjunction events between Van Allen Probes and POES/MetOp satel ...

Li, W.; Shen, X.-C.; Ma, Q.; Capannolo, L.; Shi, R.; Redmon, R.; Rodriguez, J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.;

YEAR: 2019     DOI: 10.1029/2019GL082095

electron precipitation; hiss; plasmaspheric plume; Plume wave; Van Allen Probes; whistler mode wave

Sensitivity of EMIC Wave-Driven Scattering Loss of Ring Current Protons to Wave Normal Angle Distribution

Electromagnetic ion cyclotron waves have long been recognized to play a crucial role in the dynamic loss of ring current protons. While the field-aligned propagation approximation of electromagnetic ion cyclotron waves was widely used to quantify the scattering loss of ring current protons, in this study, we find that the wave normal distribution strongly affects the pitch angle scattering efficiency of protons. Increase of peak normal angle or angular width can considerably reduce the scattering rates of <=10 keV protons. F ...

Cao, Xing; Ni, Binbin; Summers, Danny; Shprits, Yuri; Gu, Xudong; Fu, Song; Lou, Yuequn; Zhang, Yang; Ma, Xin; Zhang, Wenxun; Huang, He; Yi, Juan;

YEAR: 2019     DOI: 10.1029/2018GL081550

EMIC waves; Quasi-linear diffusion; Ring current protons; Van Allen Probes; wave-particle interactions

2018

Rapid loss of relativistic electrons by EMIC waves in the outer radiation belt observed by Arase, Van Allen Probes, and the PWING ground stations

There has been increasing evidence for pitch angle scattering of relativistic electrons by electromagnetic ion cyclotron (EMIC) waves. Theoretical studies have predicted that the loss time scale of MeV electrons by EMIC waves can be very fast, suggesting that MeV electron fluxes rapidly decrease in association with the EMIC wave activity. This study reports on a unique event of MeV electron loss induced by EMIC waves based on Arase, Van Allen Probes, and ground-based network observations. Arase observed a signature of MeV el ...

Kurita, S.; Miyoshi, Y.; Shiokawa, K.; Higashio, N.; Mitani, T.; Takashima, T.; Matsuoka, A.; Shinohara, I.; Kletzing, C.; Blake, J.; Claudepierre, S.; Connors, M.; Oyama, S.; Nagatsuma, T.; Sakaguchi, K.; Baishev, D.; Otsuka, Y.;

YEAR: 2018     DOI: 10.1029/2018GL080262

EMIC waves; loss; PWING project; Radiation belt; The Arase satellite; Van Allen Probes

Combined Scattering of Outer Radiation Belt Electrons by Simultaneously Occurring Chorus, Exohiss, and Magnetosonic Waves

We report a typical event that fast magnetosonic (MS) waves, exohiss, and two-band chorus waves occurred simultaneously on the dayside observed by Van Allen Probes on 25 December 2013. By combining calculations of electron diffusion coefficients and 2-D Fokker-Planck diffusion simulations, we quantitatively analyze the combined scattering effect of multiple waves to demonstrate that the net impact of combined scattering does not simply depend on the wave intensity dominance of various plasma waves. Although the observed MS w ...

Hua, Man; Ni, Binbin; Fu, Song; Gu, Xudong; Xiang, Zheng; Cao, Xing; Zhang, Wenxun; He, Ying; Huang, He; Lou, Yuequn; Zhang, Yang;

YEAR: 2018     DOI: 10.1029/2018GL079533

Combined scattering effect; diffusion simulations; Exohiss; magnetosonic waves; resonant wave-particle interactions; two-band chorus waves; Van Allen Probes

Impulsively Excited Nightside Ultralow Frequency Waves Simultaneously Observed On and Off the Magnetic Equator

The Arase spacecraft is capable of observing ultralow-frequency waves in the inner magnetosphere at intermediate magnetic latitudes, a region sparsely covered by previous space craft missions. We report a series of impulsively excited fundamental toroidal mode standing Alfv\ en waves in the midnight sector observed by Arase outside the plasmasphere at magnetic latitudes 13\textendash24\textdegree . The wave onsets are concurrent with Pi2 onsets detected by the Van Allen Probe B spacecraft at the magnetic equator in the dusks ...

Takahashi, Kazue; Denton, Richard; Motoba, Tetsuo; Matsuoka, Ayako; Kasaba, Yasumasa; Kasahara, Yoshiya; Teramoto, Mariko; Shoji, Masafumi; Takahashi, Naoko; Miyoshi, Yoshizumi; e, Masahito; Kumamoto, Atsushi; Tsuchiya, Fuminori; Redmon, Robert; Rodriguez, Juan;

YEAR: 2018     DOI: 10.1029/2018GL078731

Van Allen Probes

Understanding the Driver of Energetic Electron Precipitation Using Coordinated Multisatellite Measurements

Magnetospheric plasma waves play a significant role in ring current and radiation belt dynamics, leading to pitch angle scattering loss and/or stochastic acceleration of the particles. During a non-storm time dropout event on 24 September 2013, intense electromagnetic ion cyclotron (EMIC) waves were detected by Van Allen Probe A (Radiation Belt Storm Probes-A). We quantitatively analyze a conjunction event when Van Allen Probe A was located approximately along the same magnetic field line as MetOp-01, which detected simultan ...

Capannolo, L.; Li, W.; Ma, Q.; Zhang, X.-J.; Redmon, R.; Rodriguez, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Engebretson, M.; Spence, H.; Reeves, G.;

YEAR: 2018     DOI: 10.1029/2018GL078604

EMIC waves; energetic particle precipitation; pitch angle scattering; Radiation belts; Van Allen Probes; wave particle interactions

Electron Scattering by Plasmaspheric Hiss in a Nightside Plume

Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L ~ 4\textendash6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak ...

Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man;

YEAR: 2018     DOI: 10.1029/2018GL077212

Electron scattering; nightside plumes; Plasmaspheric Hiss; Van Allen Probes

Resonant Scattering of Radiation Belt Electrons by Off-Equatorial Magnetosonic Waves

Fast magnetosonic (MS) waves are commonly regarded as electromagnetic waves that are characteristically confined within \textpm3\textdegree of the geomagnetic equator. We report two typical off-equatorial MS events observed by Van Allen Probes, that is, the 8 May 2014 event that occurred at the geomagnetic latitudes of 7.5\textdegree\textendash9.2\textdegree both inside and outside the plasmasphere with the wave amplitude up to 590 pT and the 9 January 2014 event that occurred at the latitudes of\textemdash(15.7\textdegree\t ...

Ni, Binbin; Zou, Zhengyang; Fu, Song; Cao, Xing; Gu, Xudong; Xiang, Zheng;

YEAR: 2018     DOI: 10.1002/grl.v45.310.1002/2017GL075788

butterfly pitch angle distributions; off-equatorial MS waves; radiation belt electrons; Van Allen Probes

Storm-time evolution of outer radiation belt relativistic electrons by a nearly continuous distribution of chorus

During the 13-14 November 2012 storm, Van Allen Probe A simultaneously observed a 10-h period of enhanced chorus (including quasi-parallel and oblique propagation components) and relativistic electron fluxes over a broad range of L = 3-6 and MLT=2 - 10 within a complete orbit cycle. By adopting a Gaussian fit to the observed wave spectra, we obtain the wave parameters and calculate the bounce-averaged diffusion coefficients. We solve the Fokker-Planck diffusion equation to simulate flux evolutions of relativistic (1.8-4.2 Me ...

Yang, Chang; Xiao, Fuliang; He, Yihua; Liu, Si; Zhou, Qinghua; Guo, Mingyue; Zhao, Wanli;

YEAR: 2018     DOI: 10.1002/2017GL075894

energetic electron; Geomagnetic storm; outer radiation belt; Van Allen Probes; Wave-particle interaction; whistler-mode chorus wave

Space Weather Operation at KASI with Van Allen Probes Beacon Signals

The Van Allen Probes (VAPs) are the only modern NASA spacecraft broadcasting real-time data on the Earth\textquoterights radiation belts for space weather operations. Since 2012, the Korea Astronomy and Space Science Institute (KASI) has contributed to the receipt of this data via a 7-m satellite tracking antenna and used these data for space weather operations. An approximately 15-min period is required from measurement to acquisition of Level-1 data. In this paper, we demonstrate the use of VAP data for monitoring space we ...

Lee, Jongkil; Kim, Kyung-Chan; Romeo, Giuseppe; Ukhorskiy, Sasha; Sibeck, David; Kessel, Ramona; Mauk, Barry; Giles, Barbara; Gu, Bon-Jun; Lee, Hyesook; Park, Young-Deuk; Lee, Jaejin;

YEAR: 2018     DOI: 10.1002/2017SW001726

Electron acceleration; Radiation belt; Relativistic electron; Space weather; Van Allen Probes

2017

Automated Identification and Shape Analysis of Chorus Elements in the Van Allen Radiation Belts

An important goal of the Van Allen Probes mission is to understand wave-particle interaction by chorus emissions in terrestrial Van Allen radiation belts. To test models, statistical characterization of chorus properties, such as amplitude variation and sweep rates, is an important scientific goal. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrumentation suite provides measurements of wave electric and magnetic fields as well as DC magnetic fields for the Van Allen Probes mission. How ...

Gupta, Ananya; Kletzing, Craig; Howk, Robin; Kurth, William; Matheny, Morgan;

YEAR: 2017     DOI: 10.1002/2017JA023949

Chorus; Van Allen Probes; Van Allen radiation belt

Examining coherency scales, substructure, and propagation of whistler-mode chorus elements with Magnetospheric Multiscale (MMS)

Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wa ...

Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.;

YEAR: 2017     DOI: 10.1002/2017JA024474

chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes

Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric Multiscale mission during a substorm

We analyse two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on August 10, 2016. The first event corresponds to a fast dawnward flow with an anti-parallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower-hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The s ...

Contel, O.; Nakamura, R.; Breuillard, H.; Argall, M.; Graham, D.; Fischer, D.; o, A.; Berthomier, M.; Pottelette, R.; Mirioni, L.; Chust, T.; Wilder, F.; Gershman, D.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu.; Norgren, C.; Ergun, R.; Goodrich, K.; Burch, J.; Torbert, R.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C.; Magnes, W.; Strangeway, R.; Bromund, K.; . Y. Wei, H; Plaschke, F.; Anderson, B.; Le, G.; Moore, T.; Giles, B.; Paterson, W.; Pollock, C.; Dorelli, J.; Avanov, L.; Saito, Y.; Lavraud, B.; Fuselier, S.; Mauk, B.; Cohen, I.; Turner, D.; Fennell, J.; Leonard, T.; Jaynes, A.;

YEAR: 2017     DOI: 10.1002/2017JA024550

dipolarization front; electron hole; fast flow:Van allen Probes; Field-Aligned Current; lower-hybrid drift wave; substorm

Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm

There was a geomagnetic storm on 6\textendash8 March 2016, in which Van Allen Probes A and B separated by \~2.5 h measured increase of relativistic electrons with energies \~ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equati ...

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Alm, L.; Farrugia, C.; Kurth, W.; Baker, D.; Blake, J.; Funsten, H.; Reeves, G.; Ergun, R.; Khotyaintsev, Yu.; Lindqvist, P.-A.;

YEAR: 2017     DOI: 10.1002/2017JA024540

chorus waves; Geomagnetic storm; relativistic electrons; Van Allen Probes

Dayside response of the magnetosphere to a small shock compression: Van Allen Probes, Magnetospheric MultiScale, and GOES-13

Observations from Magnetospheric MultiScale (~8 Re) and Van Allen Probes (~5 and 4 Re) show that the initial dayside response to a small interplanetary shock is a double-peaked dawnward electric field, which is distinctly different from the usual bipolar (dawnward and then duskward) signature reported for large shocks. The associated ExB flow is radially inward. The shock compressed the magnetopause to inside 8 Re, as observed by MMS, with a speed that is comparable to the ExB flow. The magnetopause speed and the ExB speeds ...

Cattell, C.; Breneman, A.; Colpitts, C.; Dombeck, J.; Thaller, S.; Tian, S.; Wygant, J.; Fennell, J.; Hudson, M.; Ergun, Robert; Russell, C.; Torbert, Roy; Lindqvist, Per-Arne; Burch, J.;

YEAR: 2017     DOI: 10.1002/2017GL074895

electric field response; interplanetary shock; magnetopause; Radiation belt; Van Allen Probes

Statistical Properties of Low Frequency Plasmaspheric Hiss

Plasmaspheric hiss is an important wave mode for the dynamics of inner terrestrial magnetosphere plasma populations. It acts to scatter high energy electrons out of trapped orbits about Earth and into the atmosphere, defining the inner edge of the radiation belts over a range of energies. A low-frequency component of hiss was recently identified and is important for its ability to interact with higher energy electrons compared to typically considered hiss frequencies. This study compares the statistical properties of low and ...

Malaspina, David; Jaynes, Allison; Hospodarsky, George; Bortnik, Jacob; Ergun, Robert; Wygant, John;

YEAR: 2017     DOI: 10.1002/2017JA024328

inner magnetosphere; plasma waves; Plasmaspheric Hiss; Van Allen Probes; Wave Statistics

On the Relationship Between Electron Flux Oscillations and ULF Wave-Driven Radial Transport

The objective of this study is to investigate the relationship between the levels of electron flux oscillations and radial diffusion for different Phase Space Density (PSD) gradients, through observation and particle tracing simulations under the effect of model Ultra Low Frequency (ULF) fluctuations. This investigation aims to demonstrate that electron flux oscillation is associated with and could be used as an indicator of ongoing radial diffusion. To this direction, flux oscillations are observed through the Van Allen Pro ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Califf, Sam; Liu, Wenlong; Ergun, Robert;

YEAR: 2017     DOI: 10.1002/2016JA023741

Flux Oscillations; MAGEis; EMFISIS; EFW; Phase space density; radial diffusion; Radiation belts; Van Allen Probes

Bayesian Spectral Analysis of Chorus Sub-Elements from the Van Allen Probes

We develop a Bayesian spectral analysis technique that calculates the probability distribution functions of a superposition of wave-modes each described by a linear growth rate, a frequency and a chirp rate. The Bayesian framework has a number of advantages, including 1) reducing the parameter space by integrating over the amplitude and phase of the wave, 2) incorporating the data from each channel to determine the model parameters such as frequency which leads to high resolution results in frequency and time, 3) the ability ...

Crabtree, Chris; Tejero, Erik; Ganguli, Gurudas; Hospodarsky, George; Kletzing, Craig;

YEAR: 2017     DOI: 10.1002/2016JA023547

Bayesian Spectral; Chorus; Van Allen Probes; whistler

Inferring electromagnetic ion cyclotron wave intensity from low altitude POES proton flux measurements: A detailed case study with conjugate Van Allen Probes observations

Zhang, Yang; Shi, Run; Ni, Binbin; Gu, Xudong; Zhang, Xianguo; Zuo, Pingbing; Fu, Song; Xiang, Zheng; Wang, Qi; Cao, Xing; Zou, Zhengyang;

YEAR: 2017     DOI: 10.1016/j.asr.2016.12.035

Van Allen Probes

Analysis of self-consistent nonlinear wave-particle interactions of whistler waves in laboratory and space plasmas

Whistler mode chorus is one of the most important emissions affecting the energization of the radiation belts. Recent laboratory experiments that inject energetic electron beams into a cold plasma have revealed several spectral features in the nonlinear evolution of these instabilities that have also been observed in high-time resolution in situ wave-form data. These features include (1) a sub-element structure which consists of an amplitude modulation on time-scales slower than the bounce time, (2) closely spaced discrete f ...

Crabtree, Chris; Ganguli, Gurudas; Tejero, Erik;

YEAR: 2017     DOI: 10.1063/1.4977539

Dispersion relations; Electron beams; SingingEigenvalues; Van Allen Probes; Whistler waves

\textquotedblleftZipper-like\textquotedblright periodic magnetosonic waves: Van Allen Probes, THEMIS, and magnetospheric multiscale observations

An interesting form of \textquotedblleftzipper-like\textquotedblright magnetosonic waves consisting of two bands of interleaved periodic rising-tone spectra was newly observed by the Van Allen Probes, the Time History of Events and Macroscale Interactions during Substorms (THEMIS), and the Magnetospheric Multiscale (MMS) missions. The two discrete bands are distinct in frequency and intensity; however, they maintain the same periodicity which varies in space and time, suggesting that they possibly originate from one single s ...

Li, J.; Bortnik, J.; Li, W.; Ma, Q.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.; Breneman, A.; Thaller, S.; Funsten, H.; Mitchell, D.; Manweiler, J.; Torbert, R.; Le Contel, O.; Ergun, R.; Lindqvist, P.-A.; Torkar, K.; Nakamura, R.; Andriopoulou, M.; Russell, C.;

YEAR: 2017     DOI: 10.1002/2016JA023536

magnetosonic wave; Radiation belt; rising-tone; Van Allen Probes; zipper-like

2016

Van Allen Probes observations of oxygen cyclotron harmonic waves in the inner magnetosphere

Waves with frequencies in the vicinity of the oxygen cyclotron frequency and its harmonics have been regularly observed on the Van Allen Probes satellites during geomagnetic storms. We focus on properties of these waves and present events from the main phase of two storms on 1 November 2012 and 17 March 2013 and associated dropouts of a few MeV electron fluxes. They are electromagnetic, in the frequency range ~0.5 to several Hz, and amplitude ~0.1 to a few nT in magnetic and ~0.1 to a few mV/m in electric field, with both th ...

Usanova, M.; Malaspina, D.; Jaynes, A.; Bruder, R.; Mann, I.; Wygant, J.; Ergun, R.;

YEAR: 2016     DOI: 10.1002/grl.v43.1710.1002/2016GL070233

cyclotron harmonic waves; energetic particle loss; Geomagnetic storms; inner magnetosphere; oxygen; Van Allen Probes

The distribution of plasmaspheric hiss wave power with respect to plasmapause location

In this work, Van Allen Probes data are used to derive terrestrial plasmaspheric hiss wave power distributions organized by (1) distance away from the plasmapause and (2) plasmapause distance from Earth. This approach is in contrast to the traditional organization of hiss wave power by L parameter and geomagnetic activity. Plasmapause-sorting reveals previously unreported and highly repeatable features of the hiss wave power distribution, including a regular spatial distribution of hiss power with respect to the plasmapause, ...

Malaspina, David; Jaynes, Allison; e, Cory; Bortnik, Jacob; Thaller, Scott; Ergun, Robert; Kletzing, Craig; Wygant, John;

YEAR: 2016     DOI: 10.1002/2016GL069982

hiss; plasma waves; plasmasphere; Radiation belts; Van Allen Probes

Fast modulations of pulsating proton aurora related to subpacket structures of Pc1 geomagnetic pulsations at subauroral latitudes

To understand the role of electromagnetic ion cyclotron (EMIC) waves in determining the temporal features of pulsating proton aurora (PPA) via wave-particle interactions at subauroral latitudes, high-time-resolution (1/8 s) images of proton-induced N2+ emissions were recorded using a new electron multiplying charge-coupled device camera, along with related Pc1 pulsations on the ground. The observed Pc1 pulsations consisted of successive rising-tone elements with a spacing for each element of 100 s and subpacket structures, w ...

Ozaki, M.; Shiokawa, K.; Miyoshi, Y.; Kataoka, R.; Yagitani, S.; Inoue, T.; Ebihara, Y.; Jun, C.-W; Nomura, R.; Sakaguchi, K.; Otsuka, Y.; Shoji, M.; Schofield, I.; Connors, M.; Jordanova, V.;

YEAR: 2016     DOI: 10.1002/2016GL070008

fast modulation; Pc1 geomagnetic pulsations; pulsating proton aurora; subpacket structure; Van Allen Probes; wave-particle interactions

Inner zone and slot electron radial diffusion revisited

Using recent data from NASA\textquoterights Van Allen Probes, we estimate the quiet time radial diffusion coefficients for electrons in the inner radiation belt (L < 3) with energies from ~50 to 750 keV. The observations are consistent with dynamics dominated by pitch angle scattering and radial diffusion. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate phase space density over pitch angle to obtain a \textquotedblleftbundle content\textquotedblright that is invariant to pitc ...

O\textquoterightBrien, T.; Claudepierre, S.; Guild, T.; Fennell, J.; Turner, D.; Blake, J.; Clemmons, J.; Roeder, J.;

YEAR: 2016     DOI: 10.1002/2016GL069749

Inner zone; radial diffusion; Radiation belt; Van Allen Probes

Combined Scattering Loss of Radiation Belt Relativistic Electrons by Simultaneous Three-band EMIC Waves: A Case Study

Multiband electromagnetic ion cyclotron (EMIC) waves can drive efficient scattering loss of radiation belt relativistic electrons. However, it is statistically uncommon to capture the three bands of EMIC waves concurrently. Utilizing data from the Electric and Magnetic Field Instrument Suite and Integrated Science magnetometer onboard Van Allen Probe A, we report the simultaneous presence of three (H+, He+, and O+) emission bands in an EMIC wave event, which provides an opportunity to look into the combined scattering effect ...

He, Fengming; Cao, Xing; Ni, Binbin; Xiang, Zheng; Zhou, Chen; Gu, Xudong; Zhao, Zhengyu; Shi, Run; Wang, Qi;

YEAR: 2016     DOI: 10.1002/2016JA022483

combined scattering rates; electromagnetic ion cyclotron waves; loss timescales; radiation belt relativistic electrons; resonant wave-particle interactions; Van Allen Probes



  1      2