Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 19 entries in the Bibliography.
Showing entries from 1 through 19
2021 |
Inter-calibrated Measurements of Intense Whistlers by Arase and Van Allen Probes Abstract Measurements of electromagnetic waves in space plasmas are an important tool for our understanding of physical processes in this environment. Inter-calibration of data from different spacecraft missions is necessary for combining their measurements in empirical models or in case studies. We show results collected during a close conjunction of the Van Allen Probes and Arase spacecraft. The inter-calibration is based on a fortuitous case of common observations of strong whistlers at frequencies between a few hundred h ... Santolik, O.; Miyoshi, Y.; Kolmašová, I.; Matsuda, S.; Hospodarsky, G.; Hartley, D.; Kasahara, Y.; Kojima, H.; Matsuoka, A.; Shinohara, I.; Kurth, W.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029700 calibration of measeurements of electromagnetic waves; Whistlers; ducts; Van Allen Probes |
The Roles of the Magnetopause and Plasmapause in Storm-Time ULF Wave Power Enhancements Abstract Ultra Low Frequency (ULF) waves play a crucial role in transporting and coupling energy within the magnetosphere. During geomagnetic storms, dayside magnetospheric ULF wave power is highly variable with strong enhancements that are dominated by elevated solar wind driving. However, the radial distribution of ULF wave power is complex - controlled interdependently by external solar wind driving and the internal magnetospheric structuring. We conducted a statistical analysis of observed storm-time ULF wave power from ... Sandhu, J.; Rae, I.; Staples, F.; Hartley, D.; Walach, M.-T.; Elsden, T.; Murphy, K.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2021JA029337 ULF waves; Geomagnetic storms; Van Allen Probes; radial diffusion; inner magnetosphere; plasmasphere |
Abstract We present, for the first time, a plasmaspheric hiss event observed by the Van Allen probes in response to two successive interplanetary shocks occurring within an interval of ∼2 hours on December 19, 2015. The first shock arrived at 16:16 UT and caused disappearance of hiss for ∼30 minutes. Combined effect of plasmapause crossing, significant Landau damping by suprathermal electrons and their gradual removal by magnetospheric compression led to the disappearance of hiss. Calculation of electron phase space dens ... Chakraborty, S.; Chakrabarty, D.; Reeves, G.; Baker, D.; Claudepierre, S.; Breneman, A.; Hartley, D.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028873 Plasmaspheric Hiss; Van Allen Probe; Interplanetary shocks; substorms; Whistlers; ULF waves; Van Allen Probes |
AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ... Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2021 YEAR: 2021   DOI: https://doi.org/10.1029/2020JA028484 quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave |
2020 |
We utilize 17 years of combined Van Allen Probes and Arase data to statistically analyze the response of the inner magnetosphere to the orientation of the interplanetary magnetic field (IMF) By component. Past studies have demonstrated that the IMF By component introduces a similarly oriented By component into the magnetosphere. However, these studies have tended to focus on field lines in the magnetotail only reaching as close to the Earth as the geosynchronous orbit. By exploiting data from these inner magnetospheric spac ... Case, N.; Hartley, D.; Grocott, A.; Miyoshi, Y.; Matsuoka, A.; Imajo, S.; Kurita, S.; Shinohara, I.; Teramoto, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA028765 By; y-component; inner magnetosphere; IMF; response; Van Allen Probes |
Whistler mode waves observed in the Earth s inner magnetosphere at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity are called quasiperiodic (QP) emissions. Conjugate measurements of QP events at several different locations can be used to estimate their spatial extent and spatiotemporal variability. Results obtained using conjugate QP measurements provided by the ground-based station Kannuslehto (L≈5.5) and the Van Allen Probes spacecraft (L shells between about ... Bezděková, B.; Němec, F.; Manninen, J.; Hospodarsky, G.; Santolik, O.; Kurth, W.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027793 |
Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ... Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2020JA027918 quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes |
Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitud ... Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020JA027918 quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes |
2019 |
Two wave packets of second harmonic poloidal Pc 4 waves with a wave frequency of ~7 mHz were detected by Van Allen Probe A at a radial distance of ~5.8 RE and magnetic local time of 13 hr near the magnetic equator, where plasmaspheric refilling was in progress. Proton butterfly distributions with energy dispersions were also measured at the same time; the proton fluxes at 10-30 keV oscillated with the same frequency as the Pc 4 waves. Using the ion sounding technique, we find that the Pc 4 waves propagated eastward with an a ... Yamamoto, K.; e, Nos\; Keika, K.; Hartley, D.P.; Smith, C.W.; MacDowall, R.J.; Lanzerotti, L.J.; Mitchell, D.G.; Spence, H.E.; Reeves, G.D.; Wygant, J.R.; Bonnell, J.W.; Oimatsu, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019JA027158 drift-bounce resonance; Geomagnetic storm; plasmasphere; ring current; substorm; ULF wave; Van Allen Probes |
Using observations from the Van Allen Probes EMFISIS instrument, coupled with ray tracing simulations, we determine the fraction of chorus wave power with the conditions required to access the plasmasphere and evolve into plasmaspheric hiss. It is found that only an extremely small fraction of chorus occurs with the required wave vector orientation, carrying only a small fraction of the total chorus wave power. The exception is on the edge of plasmaspheric plumes, where strong azimuthal density gradients are present. In thes ... Hartley, D.; Kletzing, C.; Chen, L.; Horne, R.; ik, O.; Published by: Geophysical Research Letters Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2019GL082111 chorus waves; EMFISIS; Plasmaspheric Hiss; plasmaspheric plumes; Van Allen Probes; wave normal angle |
2018 |
Quasiperiodic Whistler Mode Emissions Observed by the Van Allen Probes Spacecraft Quasiperiodic (QP) emissions are whistler mode electromagnetic waves observed in the inner magnetosphere which exhibit a QP time modulation of the wave intensity. We analyze 768 QP events observed during the first five years of the operation of the Van Allen Probes spacecraft (09/2012\textendash10/2017). Multicomponent wave measurements performed in the equatorial region, where the emissions are likely generated, are used to reveal new experimental information about their properties. We show that the events are observed near ... emec, F.; Hospodarsky, G.; a, B.; Demekhov, A.; Pasmanik, D.; ik, O.; Kurth, W.; Hartley, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2018 YEAR: 2018   DOI: 10.1029/2018JA026058 |
Determining Plasmaspheric Densities from Observations of Plasmaspheric Hiss A new method of inferring electron plasma densities inside of the plasmasphere is presented. Utilizing observations of the electric and magnetic field wave power associated with plasmaspheric hiss, coupled with the cold plasma dispersion relation, permits calculation of the plasma density. This methodology yields a density estimate for each frequency channel and time interval where plasmaspheric hiss is observed and is shown to yield results that are generally in agreement with densities determined via other methods. A stati ... Hartley, D.; Kletzing, C.; De Pascuale, S.; Kurth, W.; ik, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018JA025658 Density; EMFISIS; plasmasphere; Plasmaspheric Hiss; Van Allen Probes |
Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt We present the first evidence of electron microbursts observed near the equatorial plane in Earth\textquoterights outer radiation belt. We observed the microbursts on March 31st, 2017 with the Magnetic Electron Ion Spectrometer and RBSP Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29-92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150-500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they w ... Shumko, Mykhaylo; Turner, Drew; O\textquoterightBrien, T.; Claudepierre, Seth; Sample, John; Hartley, D.; Fennell, Joseph; Blake, Bernard; Gkioulidou, Matina; Mitchell, Donald; Published by: Geophysical Research Letters Published on: 07/2018 YEAR: 2018   DOI: 10.1029/2018GL078451 |
Statistical Properties of Plasmaspheric Hiss from Van Allen Probes Observations Van Allen Probes observations are used to statistically investigate plasmaspheric hiss wave properties. This analysis shows that the wave normal direction of plasmaspheric hiss is predominantly field aligned at larger L shells, with a bimodal distribution, consisting of a near-field aligned and a highly oblique component, becoming apparent at lower L shells. Investigation of this oblique population reveals that it is most prevalent at L < 3, frequencies with f/fce> 0.01 (or f> 700 Hz), low geomagnetic activity levels, and be ... Hartley, D.; Kletzing, C.; ik, O.; Chen, L.; Horne, R.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2018 YEAR: 2018   DOI: 10.1002/2017JA024593 Bimodal; chorus waves; EMFISIS; Plasmaspheric Hiss; Van Allen Probes; wave normal angle |
2017 |
Whistler-mode chorus waves are a naturally occurring electromagnetic emission observed in Earth\textquoterights magnetosphere. Here, for the first time, data from NASA\textquoterights Magnetospheric Multiscale (MMS) mission were used to analyze chorus waves in detail, including the calculation of chorus wave normal vectors, k. A case study was examined from a period of substorm activity around the time of a conjunction between the MMS constellation and NASA\textquoterights Van Allen Probes mission on 07 April 2016. Chorus wa ... Turner, D.; Lee, J.; Claudepierre, S.; Fennell, J.; Blake, J.; Jaynes, A.; Leonard, T.; Wilder, F.; Ergun, R.; Baker, D.; Cohen, I.; Mauk, B.; Strangeway, R.; Hartley, D.; Kletzing, C.; Breuillard, H.; Le Contel, O.; Khotyaintsev, Yu; Torbert, R.; Allen, R.; Burch, J.; Santolik, O.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024474 chorus waves; inner magnetosphere; Magnetospheric multiscale; MMS; Radiation belts; Van Allen Probes |
A technique to quantitatively determine the sheath impedance of the Van Allen Probes Electric Field and Waves (EFW) instrument is presented. This is achieved, for whistler mode waves, through a comparison between the total electric field wave power spectra calculated from magnetic field observations and cold plasma theory, and the total electric field wave power measured by the EFW spherical double probes instrument. In a previous study, a simple density-dependent sheath impedance model was developed in order to account for ... Hartley, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Bounds, S.; Averkamp, T.; Bonnell, J.; ik, O.; Wygant, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023597 antenna sheath impedance; EFW; electric field; EMFISIS; Van Allen Probes; whistler mode waves |
2016 |
Cold plasma theory and parallel wave propagation are often assumed when approximating the whistler mode magnetic field wave power from electric field observations. The current study is the first to include the wave normal angle from the Electric and Magnetic Field Instrument Suite and Integrated Science package on board the Van Allen Probes in the conversion factor, thus allowing for the accuracy of these assumptions to be quantified. Results indicate that removing the assumption of parallel propagation does not significantl ... Hartley, D.; Kletzing, C.; Kurth, W.; Bounds, S.; Averkamp, T.; Hospodarsky, G.; Wygant, J.; Bonnell, J.; ik, O.; Watt, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022501 EFW; EMFISIS; Plasmaspheric Hiss; sheath impedance; Van Allen Probes; whistler mode chorus |
2015 |
An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values o ... Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.; Published by: Space Weather Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2015SW001168 |
Most theoretical wave models require the power in the wave magnetic field in order to determine the effect of chorus waves on radiation belt electrons. However, researchers typically use the cold plasma dispersion relation to approximate the magnetic wave power when only electric field data are available. In this study, the validity of using the cold plasma dispersion relation in this context is tested using Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) observations of both the electric and ma ... Hartley, D.; Chen, Y.; Kletzing, C.; Denton, M.; Kurth, W.; Published by: Journal of Geophysical Research: Space Physics Published on: 02/2015 YEAR: 2015   DOI: 10.1002/2014JA020808 chorus waves; EMFISIS; energetic electrons; Radiation belts; Van Allen Probes; wave-particle interactions |
1