Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 43 entries in the Bibliography.
Showing entries from 1 through 43
2020 |
Defining Radiation Belt Enhancement Events Based on Probability Distributions We present a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments, but a strength of this methodology is that it can be applied uniformly to heterogeneous data sets. It allows quantitative comparison of data sets with different energies, units, orbits, and so forth. The methodology identifies a range of ti ... Reeves, Geoffrey; Vandegriff, Elizabeth; Niehof, Jonathan; Morley, Steven; Cunningham, Gregory; Henderson, Michael; Larsen, Brian; Published by: Space Weather Published on: 06/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2020SW002528 Radiation belts; methods; geosynchronous; energetic particles; hazards; Solar Cycle; Van Allen Probes |
Episodic Occurrence of Field-Aligned Energetic Ions on the Dayside The tens of kiloelectron volt ions observed in the ring current region at L ~ 3\textendash7 generally have pancake pitch angle distributions, that is, peaked at 90\textdegree. However, in this study, by using the Van Allen Probe observations on the dayside, unexpectedly, we have found that about 5\% time, protons with energies of ~30 to 50 keV show two distinct populations, having an additional field-aligned population overlapping with the original pancake population. The newly appearing field-aligned populations have higher ... Yue, Chao; Bortnik, Jacob; Zou, Shasha; Nishimura, Yukitoshi; Foster, John; Coppeans, Thomas; Ma, Qianli; Zong, Qiugang; Hull, A.; Henderson, Mike; Reeves, Geoffrey; Spence, Harlan; Published by: Geophysical Research Letters Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019GL086384 |
2019 |
Effects of a Realistic O + Source on Modeling the Ring Current We use the UNH-IMEF electric field model to simulate the convection of O+ from the near-earth plasma sheet into the ring current during the March 17, 2015 storm. Using Van Allen Probes data from the night side apogee, we reconstruct a realistic O+ source. Modeling this storm using the UNH-IMEF electric field and a dipole magnetic field has previously been found to have good agreement. Using the realistic source along with drift times and charge exchange loss from these results, we model an inbound pass near the peak of the s ... Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Spence, H.E.; Henderson, M.G.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019JA026859 |
This work designs a new model called PreMevE to predict storm-time distributions of relativistic electrons within Earth\textquoterights outer radiation belt. This model takes advantage of the cross-energy, -L-shell, and \textendashpitch-angle coherence associated with wave-electron resonant interactions, ingests observations from belt boundaries\textemdashmainly by NOAA POES in low-Earth-orbits (LEOs), and provides high-fidelity nowcast (multiple-hour prediction) and forecast (> ~1 day) of MeV electron fluxes over L-shells b ... Chen, Yue; Reeves, Geoffrey; Fu, Xiangrong; Henderson, Michael; Published by: Space Weather Published on: 02/2019 YEAR: 2019   DOI: 10.1029/2018SW002095 event-specific predictions; LANL GEO observations; linear predictive filters; MeV electron events; outer radiation belt; precipitation at low-earth-orbits (LEO); Van Allen Probes |
We present the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the intense March 2015 geomagnetic storm. Comparing observed PSD profiles as a function of L* at fixed first, M, and second, K, adiabatic invariants with those produced by simulations is critical for determining the physical processes responsible for the outer radiation belt dynamics. Here we show that the bulk of the accelerated and enhanced outer radiation belt population consists of electrons with K < 0.17 G1/2Re. Fo ... Ozeke, L.; Mann, I.; Claudepierre, S.; Henderson, M.; Morley, S.; Murphy, K.; Olifer, L.; Spence, H.; Baker, D.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2019 YEAR: 2019   DOI: 10.1029/2018JA026326 Local Acceleration; March 2015 storm; Phase space density; radial diffusion; Radiation belt; ULF waves; Van Allen Probes |
2018 |
The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch-angle (α0) is analyzed during the calm 11-day interval (March 4 \textendashMarch 15) following the March 1 storm 2013. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, α0)-regions persist through 11 days of hiss wave scattering; the pitch-angle ... Ripoll, -F.; Loridan, V.; Denton, M.; Cunningham, G.; Reeves, G.; ik, O.; Fennell, J.; Turner, D.; Drozdov, A; Villa, J.; Shprits, Y; Thaller, S.; Kurth, W.; Kletzing, C.; Henderson, M.; Ukhorskiy, A; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2018 YEAR: 2018   DOI: 10.1029/2018JA026111 electron lifetime; hiss waves; pitch-angle diffusion coefficient; Radiation belts; Van Allen Probes; wave particle interactions |
Inward radial diffusion driven by ULF waves has long been known to be capable of accelerating radiation belt electrons to very high energies within the heart of the belts, but more recent work has shown that radial diffusion values can be highly event-specific and mean values or empirical models may not capture the full significance of radial diffusion to acceleration events. Here we present an event of fast inward radial diffusion, occurring during a period following the geomagnetic storm of 17 March 2015. Ultra-relativisti ... Jaynes, A.; Ali, A.; Elkington, S.; Malaspina, D.; Baker, D.; Li, X.; Kanekal, S.; Henderson, M.; Kletzing, C.; Wygant, J.; Published by: Geophysical Research Letters Published on: 09/2018 YEAR: 2018   DOI: 10.1029/2018GL079786 Magnetosphere; radial diffusion; Radiation belts; ULF waves; Van Allen Probes |
A Statistical Survey of Radiation Belt Dropouts Observed by Van Allen Probes A statistical analysis on the radiation belt dropouts is performed based on 4 years of electron phase space density data from the Van Allen Probes. The μ, K, and L* dependence of dropouts and their driving mechanisms and geomagnetic and solar wind conditions are investigated using electron phase space density data sets for the first time. Our results suggest that electronmagnetic ion cyclotron (EMIC) wave scattering is the dominant dropout mechanism at low L* region, which requires the most active geomagnetic and solar wind ... Xiang, Zheng; Tu, Weichao; Ni, Binbin; Henderson, M.; Cao, Xing; Published by: Geophysical Research Letters Published on: 08/2018 YEAR: 2018   DOI: 10.1029/2018GL078907 EMIC wave; magnetopause shadowing; Phase space density; radial diffusion; radiation belt dropout; Van Allen Probes; wave particle interaction |
2017 |
The Evolution of the Plasma Sheet Ion Composition: Storms and Recoveries The ion plasma sheet (~few hundred eV to ~few 10s keV) is usually dominated by H+ ions. Here, changes in ion composition within the plasma sheet are explored both during individual events, and statistically during 54 calm-to-storm events and during 21 active-to-calm events. Ion composition data from the HOPE (Helium, Oxygen, Proton, Electron) instruments onboard Van Allen Probes satellites provide exceptional spatial and temporal resolution of the H+, O+, and He+ ion fluxes in the plasma sheet. H+ shown to be the dominant io ... Denton, M.; Thomsen, M.; Reeves, G.; Larsen, B.; Henderson, M.; Jordanova, V.; Fernandes, P.; Friedel, R.; Skoug, R.; Funsten, H.; MacDonald, E.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2017 YEAR: 2017   DOI: 10.1002/2017JA024475 |
The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activ ... Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024160 inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes |
The most significant unknown regarding relativistic electrons in Earth\textquoterights outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurem ... Schiller, Q.; Tu, W.; Ali, A.; Li, X.; Godinez, H.; Turner, D.; Morley, S.; Henderson, M.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2017 YEAR: 2017   DOI: 10.1002/2016JA023093 CubeSat; data assimilation; electron; event specific; Modeling; Radiation belt; Van Allen Probes |
Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ... Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2017 YEAR: 2017   DOI: 10.1029/1999JA900445 energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes |
2016 |
Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy fr ... Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.; Published by: Journal of Geophysical Research: Space Physics Published on: 12/2016 YEAR: 2016   DOI: 10.1002/2016JA023600 2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes |
Ring Current Pressure Estimation with RAM-SCB using Data Assimilation and Van Allen Probe Flux Data Capturing and subsequently modeling the influence of tail plasma injections on the inner magnetosphere is important for understanding the formation and evolution of the ring current. In this study, the ring current distribution is estimated with the Ring Current-Atmosphere Interactions Model with Self-Consistent Magnetic field (RAM-SCB) using, for the first time, data assimilation techniques and particle flux data from the Van Allen Probes. The state of the ring current within the RAM-SCB model is corrected via an ensemble b ... Godinez, Humberto; Yu, Yiqun; Lawrence, Eric; Henderson, Michael; Larsen, Brian; Jordanova, Vania; Published by: Geophysical Research Letters Published on: 11/2016 YEAR: 2016   DOI: 10.1002/2016GL071646 |
The complex nature of storm-time ion dynamics: Transport and local acceleration Data from the Van Allen Probes Helium, Oxygen, Proton, Electron (HOPE) spectrometers reveal hitherto unresolved spatial structure and dynamics in ion populations. Complex regions of O+ dominance, at energies from a few eV to >10 keV, are observed throughout the magnetosphere. Isolated regions on the dayside that are rich in energetic O+ might easily be interpreted as strong energization of ionospheric plasma. We demonstrate, however, that both the energy spectrum and the limited MLT extent of these features can be explained ... Denton, M.; Reeves, G.; Thomsen, M.; Henderson, M.; Friedel, R.; Larsen, B.; Skoug, R.; Funsten, H.; Spence, H.; Kletzing, C.; Published by: Geophysical Research Letters Published on: 09/2016 YEAR: 2016   DOI: 10.1002/2016GL070878 |
Van Allen Probes observations during the 17 March 2015 major geomagnetic storm strongly suggest that VLF transmitter-induced waves play an important role in sculpting the earthward extent of outer zone MeV electrons. A magnetically confined bubble of very low frequency (VLF) wave emissions of terrestrial, human-produced origin surrounds the Earth. The outer limit of the VLF bubble closely matches the position of an apparent barrier to the inward extent of multi-MeV radiation belt electrons near 2.8 Earth radii. When the VLF ... Foster, J.; Erickson, P.; Baker, D.; Jaynes, A.; Mishin, E.; Fennel, J.; Li, X.; Henderson, M.; Kanekal, S.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2016 YEAR: 2016   DOI: 10.1002/jgra.v121.610.1002/2016JA022509 |
We present dynamic simulations of energy-dependent losses in the radiation belt " slot region" and the formation of the two-belt structure for the quiet days after the March 1st storm. The simulations combine radial diffusion with a realistic scattering model, based data-driven spatially and temporally-resolved whistler mode hiss wave observations from the Van Allen Probes satellites. The simulations reproduce Van Allen Probes observations for all energies and L-shells (2 to 6) including (a) the strong energy-dependence to t ... Ripoll, J.; Reeves, G.; Cunningham, G.; Loridan, V.; Denton, M.; ik, O.; Kurth, W.; Kletzing, C.; Turner, D.; Henderson, M.; Ukhorskiy, A; Published by: Geophysical Research Letters Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016GL068869 electron lifetimes; electron losses; hiss waves; Radiation belts; Slot region; Van Allen Probes; wave particle interactions |
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth\textquoterights radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the M ... Ma, Q.; Li, W.; Thorne, R.; Nishimura, Y.; Zhang, X.-J.; Reeves, G.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Angelopoulos, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 05/2016 YEAR: 2016   DOI: 10.1002/2016JA022507 electron acceleration and loss; energy-dependent diffusion; radial diffusion; radiation belt simulation; Van Allen Probes |
Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit This study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. We first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons\textemdashobserved by satellites with very different altitudes\textemdashwith correlation coefficients as high as ≳ 0.85. Based upon the coherence, we then tested the feas ... Chen, Yue; Reeves, Geoffrey; Cunningham, Gregory; Redmon, Robert; Henderson, Michael; Published by: Geophysical Research Letters Published on: 02/2016 YEAR: 2016   DOI: 10.1002/2015GL067481 forecast and nowcast; hundreds of keV precipitating electrons; LEO observations; Radiation belts; relativistic electrons; wave particle interactions |
Energetic electron observations in Earth\textquoterights radiation belts are typically sparse and multi-point studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross-calibration into two parts \textendash one that removes any spectral assumptions fr ... Morley, Steven; Sullivan, John; Henderson, Michael; Blake, Bernard; Baker, Daniel; Published by: Space Weather Published on: 02/2016 YEAR: 2016   DOI: 10.1002/2015SW001339 |
2015 |
During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response inc ... Kanekal, S.; Baker, D.; Henderson, M.; Li, W.; Fennell, J.; Zheng, Y.; Richardson, I.; Jones, A.; Ali, A.; Elkington, S.; Jaynes, A.; Li, X.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015JA021395 CME; HSS; Van Allen Probes; IP shock; relativistic electrons |
A background correction algorithm for Van Allen Probes MagEIS electron flux measurements We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes MagEIS electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagE ... Claudepierre, S.; O\textquoterightBrien, T.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Looper, M.; Mazur, J.; Mulligan, T.; Spence, H.; Reeves, G.; Friedel, R.; Henderson, M.; Larsen, B.; Published by: Journal of Geophysical Research: Space Physics Published on: 06/2015 YEAR: 2015   DOI: 10.1002/2015JA021171 Background contamination; Inner radiation belt; outer radiation belt; Particle measurements; Radiation belt; Spacecraft engineering; Van Allen Probes |
An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit Knowledge of the plasma fluxes at geosynchronous orbit is important to both scientific and operational investigations. We present a new empirical model of the ion flux and the electron flux at geosynchronous orbit (GEO) in the energy range ~1 eV to ~40 keV. The model is based on a total of 82 satellite years of observations from the magnetospheric plasma analyzer instruments on Los Alamos National Laboratory satellites at GEO. These data are assigned to a fixed grid of 24 local times and 40 energies, at all possible values o ... Denton, M.; Thomsen, M.; Jordanova, V.; Henderson, M.; Borovsky, J.; Denton, J.; Pitchford, D.; Hartley, D.; Published by: Space Weather Published on: 04/2015 YEAR: 2015   DOI: 10.1002/2015SW001168 |
A new 3D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (>0.5 MeV) observed by the Van Allen Probes during a 10-day quiet period in March 2013. During the inward transport the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and Electromagnetic Ion Cyclotron (EMIC) waves reproduces the esse ... Ma, Q.; Li, W.; Thorne, R.; Ni, B.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Baker, D.; Blake, J.; Fennell, J.; Claudepierre, S.; Angelopoulos, V.; Published by: Geophysical Research Letters Published on: 02/2015 YEAR: 2015   DOI: 10.1002/2014GL062977 pitch angle scattering; radiation belts modeling; Van Allen Probes; Van Allen Probes observations |
2014 |
March 2013 provided the first equinoctial period when all of the instruments on the Van Allen Probes spacecraft were fully operational. This interval was characterized by disturbances of outer zone electrons with two timescales of variation, diffusive and rapid dropout and restoration [Baker et al., 2014]. A radial diffusion model was applied to the month-long interval to confirm that electron phase space density is well described by radial diffusion for the whole month at low first invariant <=400 MeV/G, but peaks in phase ... Li, Zhao; Hudson, Mary; Jaynes, Allison; Boyd, Alexander; Malaspina, David; Thaller, Scott; Wygant, John; Henderson, Michael; Published by: Journal of Geophysical Research: Space Physics Published on: 10/2014 YEAR: 2014   DOI: 10.1002/2014JA020359 |
The trapping of equatorial magnetosonic waves in the Earth\textquoterights outer plasmasphere We investigate the excitation and propagation of equatorial magnetosonic waves observed by the Van Allen Probes and describe evidence for a trapping mechanism for magnetosonic waves in the Earth\textquoterights plasmasphere. Intense equatorial magnetosonic waves were observed inside the plasmasphere in association with a pronounced proton ring distribution, which provides free energy for wave excitation. Instability analysis along the inbound orbit demonstrates that broadband magnetosonic waves can be excited over a localize ... Ma, Q.; Li, W.; Chen, L.; Thorne, R.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Reeves, G.; Henderson, M.; Spence, H.; Published by: Geophysical Research Letters Published on: 09/2014 YEAR: 2014   DOI: 10.1002/2014GL061414 magnetosonic waves; Van Allen Probes; wave excitation; wave propagation |
Acceleration and loss driven by VLF chorus: Van Allen Probes observations and DREAM model results For over a decade now we have understood the response of the Earth\textquoterights radiation belts to solar wind driving are a delicate balance of acceleration and loss processes. Theory has shown that the interaction of relativistic electrons with VLF whistler mode chorus can produce both energization through momentum diffusion and loss through pitch angle diffusion. Recent results from the Van Allen Probes mission has confirmed observationally that chorus can produce both acceleration and loss. The Van Allen Probes satelli ... Reeves, G.; Spence, H.; Henderson, M.; Tu, W.; Cunningham, G.; Chen, Y.; Blake, J.; Fennell, J.; Baker, D.; Published by: Published on: 08/2014 YEAR: 2014   DOI: 10.1109/URSIGASS.2014.6929879 |
Van Allen Probes observations of direct wave-particle interactions Quasiperiodic increases, or \textquotedblleftbursts,\textquotedblright of 17\textendash26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75\textendash80\textdegree, while fluxes at 90\textdegree and <60\textdegree remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and ... Fennell, J.; Roeder, J.; Kurth, W.; Henderson, M.; Larsen, B.; Hospodarsky, G.; Wygant, J.; Claudepierre, J.; Blake, J.; Spence, H.; Clemmons, J.; Funsten, H.; Kletzing, C.; Reeves, G.; Published by: Geophysical Research Letters Published on: 03/2014 YEAR: 2014   DOI: 10.1002/2013GL059165 |
On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, eq ... Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2014 YEAR: 2014   DOI: 10.1002/2013JA019446 dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes |
Drastic variations of Earth\textquoterights outer radiation belt electrons ultimately result from various competing source, loss, and transport processes, to which wave-particle interactions are critically important. Using 15 spacecraft including NASA\textquoterights Van Allen Probes, THEMIS, and SAMPEX missions and NOAA\textquoterights GOES and POES constellations, we investigated the evolution of the outer belt during the strong geomagnetic storm of 30 September to 3 October 2012. This storm\textquoterights main phase drop ... Turner, D.; Angelopoulos, V.; Li, W.; Bortnik, J.; Ni, B.; Ma, Q.; Thorne, R.; Morley, S.; Henderson, M.; Reeves, G.; Usanova, M.; Mann, I.; Claudepierre, S.; Blake, J.; Baker, D.; Huang, C.-L.; Spence, H.; Kurth, W.; Kletzing, C.; Rodriguez, J.; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2014 YEAR: 2014   DOI: 10.1002/jgra.v119.310.1002/2014JA019770 |
The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth\textquoterights radiation belts. Observations (up to E ~10 MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) ch ... Baker, D.; Jaynes, A.; Li, X.; Henderson, M.; Kanekal, S.; Reeves, G.; Spence, H.; Claudepierre, S.; Fennell, J.; Hudson, M.; Thorne, R.; Foster, J.; Erickson, P.; Malaspina, D.; Wygant, J.; Boyd, A.; Kletzing, C.; Drozdov, A.; Shprits, Y; Published by: Geophysical Research Letters Published on: 03/2014 YEAR: 2014   DOI: 10.1002/2013GL058942 |
We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and ... Chen, Yue; Friedel, Reiner; Henderson, Michael; Claudepierre, Seth; Morley, Steven; Spence, Harlan; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2014 YEAR: 2014   DOI: 10.1002/jgra.v119.310.1002/2013JA019431 Earth\textquoterights outer radiation belt; energetic electrons; Pitch-angle distributions |
We have recently conducted a statistical survey on pitch angle distributions of energetic electrons trapped in the Earth\textquoterights outer radiation belt, and a new empirical model was developed based upon survey results. This model\textemdashrelativistic electron pitch angle distribution (REPAD)\textemdashaims to present statistical pictures of electron equatorial pitch angle distributions, instead of the absolute flux levels, as a function of energy, L shell, magnetic local time, and magnetic activity. To quantify and ... Chen, Y.; Friedel, R.; Henderson, M.; Claudepierre, S.; Morley, S.; Spence, H.; Published by: Journal of Geophysical Research Published on: 03/2014 YEAR: 2014   DOI: 10.1002/2013JA019431 |
2013 |
Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus Recent analysis of satellite data obtained during the 9 October 2012 geomagnetic storm identified the development of peaks in electron phase space density1, which are compelling evidence for local electron acceleration in the heart of the outer radiation belt2, 3, but are inconsistent with acceleration by inward radial diffusive transport4, 5. However, the precise physical mechanism responsible for the acceleration on 9 October was not identified. Previous modelling has indicated that a magnetospheric electromagnetic emissio ... Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Blake, J.; Fennell, J.; Claudepierre, S.; Kanekal, S.; Published by: Nature Published on: 12/2013 YEAR: 2013   DOI: 10.1038/nature12889 |
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20\textendash240 keV), two medium-energy units (80\textendash1200 keV), and a high-energy unit (800\textendash4800 keV). The high unit also contains a proton telescope (55 keV\textendash20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band ... Blake, J.; Carranza, P.; Claudepierre, S.; Clemmons, J.; Crain, W.; Dotan, Y.; Fennell, J.; Fuentes, F.; Galvan, R.; George, J.; Henderson, M.; Lalic, M.; Lin, A; Looper, M.; Mabry, D.; Mazur, J.; McCarthy, B.; Nguyen, C.; textquoterightBrien, T.; Perez, M.; Redding, M.; Roeder, J.; Salvaggio, D.; Sorensen, G.; Spence, H.; Yi, S.; Zakrzewski, M.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: 10.1007/s11214-013-9991-8 |
The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ... Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: DOI: 10.1007/s11214-013-0007-5 |
Phase Space Density matching of relativistic electrons using the Van Allen Probes: REPT results 1] Phase Space Density (PSD) matching can be used to identify the presence of nonadiabatic processes, evaluate accuracy of magnetic field models, or to cross-calibrate instruments. Calculating PSD in adiabatic invariant coordinates requires a global specification of the magnetic field. For a well specified global magnetic field, nonadiabatic processes or inadequate cross calibration will give a poor PSD match. We have calculated PSD(μ, K) for both Van Allen Probes using a range of models and compare these PSDs at conjunctio ... Morley, S.; Henderson, M.; Reeves, G.; Friedel, R.; Baker, D.; Published by: Geophysical Research Letters Published on: 09/2013 YEAR: 2013   DOI: 10.1002/grl.50909 |
[1] We present NASA Van Allen Probes observations of wave-particle interactions between magnetospheric ultra-low frequency (ULF) waves and energetic electrons (20\textendash500 keV) on 31 October 2012. The ULF waves are identified as the fundamental poloidal mode oscillation and are excited following an interplanetary shock impact on the magnetosphere. Large amplitude modulations in energetic electron flux are observed at the same period (≈ 3 min) as the ULF waves and are consistent with a drift-resonant interaction. The a ... Claudepierre, S.; Mann, I.R.; Takahashi, K; Fennell, J.; Hudson, M.; Blake, J.; Roeder, J.; Clemmons, J.; Spence, H.; Reeves, G.; Baker, D.; Funsten, H.; Friedel, R.; Henderson, M.; Kletzing, C.; Kurth, W.; Wygant, J.; Published by: Geophysical Research Letters Published on: 09/2013 YEAR: 2013   DOI: 10.1002/grl.50901 |
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ... Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.; Published by: Space Science Reviews Published on: 08/2013 YEAR: 2013   DOI: 10.1007/s11214-013-9968-7 |
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ... Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.; Published by: Space Science Reviews Published on: 08/2013 YEAR: 2013   DOI: 10.1007/s11214-013-9968-7 |
Electron Acceleration in the Heart of the Van Allen Radiation Belts The Van Allen radiation belts contain ultrarelativistic electrons trapped in Earth\textquoterights magnetic field. Since their discovery in 1958, a fundamental unanswered question has been how electrons can be accelerated to such high energies. Two classes of processes have been proposed: transport and acceleration of electrons from a source population located outside the radiation belts (radial acceleration) or acceleration of lower-energy electrons to relativistic energies in situ in the heart of the radiation belts (local ... Reeves, G.; Spence, H.; Henderson, M.; Morley, S.; Friedel, R.; Funsten, H.; Baker, D.; Kanekal, S.; Blake, J.; Fennell, J.; Claudepierre, S.; Thorne, R.; Turner, D.; Kletzing, C.; Kurth, W.; Larsen, B.; Niehof, J.; Published by: Science Published on: 07/2013 YEAR: 2013   DOI: 10.1126/science.1237743 |
A quantitative analysis is performed on the decay of an unusual ring of relativistic electrons between 3 and 3.5 RE, which was observed by the Relativistic Electron Proton Telescope instrument on the Van Allen probes. The ring formed on 3 September 2012 during the main phase of a magnetic storm due to the partial depletion of the outer radiation belt for L > 3.5, and this remnant belt of relativistic electrons persisted at energies above 2 MeV, exhibiting only slow decay, until it was finally destroyed during another magneti ... Thorne, R.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Baker, D.; Spence, H.; Reeves, G.; Henderson, M.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Turner, D.; Angelopoulos, V.; Published by: Geophysical Research Letters Published on: 06/2013 YEAR: 2013   DOI: 10.1002/grl.50627 |
Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly ... Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.; Published by: Science Published on: 04/2013 YEAR: 2013   DOI: 10.1126/science.1233518 |
1