Bibliography



Found 397 entries in the Bibliography.


Showing entries from 1 through 50


2021

Multi-Point Observations of Quasiperiodic Emission Intensification and Effects on Energetic Electron Precipitation

AbstractThe two Van Allen Probes simultaneously recorded a coherently modulated quasiperiodic (QP) emission that persisted for 3 hours. The magnetic field pulsation at the locations of the two satellites showed a substantial difference, and their frequencies were close to but did not exactly match the repetition frequency of QP emissions for most of the time, suggesting that those coherent QP emissions probably originated from a common source, which then propagated over a broad area in the magnetosphere. The QP emissions wer ...

Li, Jinxing; Bortnik, Jacob; Ma, Qianli; Li, Wen; Shen, Xiaochen; Nishimura, Yukitoshi; An, Xin; Thaller, Scott; Breneman, Aaron; Wygant, John; Kurth, William; Hospodarsky, George; Hartley, David; Reeves, Geoffrey; Funsten, Herbert; Blake, Bernard; Spence, Harlan; Baker, Daniel;

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028484

quasiperiodic emissions; electron precipitation; Radiation belt; chorus waves; Van Allen Probes; ULF wave

2020

Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models

Abstract The resonant interaction of energetic particles with plasma waves, such as chorus and plasmaspheric hiss waves, plays a direct and crucial role in the acceleration and loss of radiation belt electrons that ultimately affect the dynamics of the radiation belts. In this study, we use the comprehensive wave data measurements made by the Electric and Magnetic Field Instrument Suite and Integrated Science instruments on board the two Van Allen probes, to develop multi-parameter statistical chorus and plasmaspheric hiss w ...

Aryan, Homayon; Bortnik, Jacob; Meredith, Nigel; Horne, Richard; Sibeck, David; Balikhin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028403

chorus waves; inner magnetosphere; multi parameter wave distribution; plasmaspheric hiss waves; Van Allen Probes; wave-particle interactions

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

The Implications of Temporal Variability in Wave-Particle Interactions in Earth s Radiation Belts

Changes in electron flux in Earth s outer radiation belt can be modeled using a diffusion-based framework. Diffusion coefficients D for such models are often constructed from statistical averages of observed inputs. Here, we use stochastic parameterization to investigate the consequences of temporal variability in D. Variability time scales are constrained using Van Allen Probe observations. Results from stochastic parameterization experiments are compared with experiments using D constructed from averaged inputs and an aver ...

Watt, C.; Allison, H.; Thompson, R.; Bentley, S.; Meredith, N.; Glauert, S.; Horne, R.; Rae, I.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089962

probabilistic methods; stochastic parameterization; Van Allen Probes

Correlated Observation on Global Distributions of Magnetosonic Waves and Proton Rings in the Radiation Belts

Fast magnetosonic (MS) waves are excited by the ring distribution of energetic protons preferably when the ring velocity (VR) is within a factor of 2 above or below the local Alfvén speed (VA). Here we examine the global distributions of MS waves and proton rings with 0.5VA ≤ VR ≤ 2VA based on 64 months (from October 25, 2012 to February 28, 2018) of Van Allen Probes observations. The statistical results show that MS waves are present over a broad region of L = 1.2–6.0 and 00–24 magnetic local time (MLT), wit ...

Zhou, Qinghua; Jiang, Zheng; Yang, Chang; He, Yihua; Liu, Si; Xiao, Fuliang;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028354

Fast Magnetosonic Waves; global occurrences; proton ring distribution; Radiation belt; Van Allen Probe observation; Van Allen Probes

Alpha Transmitter Signal Reflection and Triggered Emissions

Russian Alpha radio navigation system (RSDN-20) emits F1 = 11.9 kHz signals into the magnetosphere which propagate as whistler mode waves. Observed by waveform continuous burst mode from Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on Van Allen Probes, a case is presented and featured with ducted propagation, multiple reflections, and triggered emissions. Both risers and fallers appear in the triggered emissions. We use a ray tracing method to demonstrate ducted propagation, which has a s ...

Gu, Wenyao; Chen, Lunjin; Xia, Zhiyang; An, Xin; Horne, Richard;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL090165

VLF transmitter; ducted propagation; triggered emission; Van Allen Probes

On the Formation of Wedge-Like Ion Spectral Structures in the Nightside Inner Magnetosphere

Recent observations in the nightside inner magnetosphere have identified a series of wedge-like spectral structures in the energy-time spectrograms of oxygen, helium, and hydrogen ion fluxes. Although the shapes and distributions of these structures have been characterized by case and statistical studies, their formation mechanism remains unclear. Here we utilize a particle tracing model to reproduce the wedge-like structures successively observed by the twin Van Allen Probes. The model suggests that these structures origina ...

Zhou, Xu-Zhi; Ren, Jie; Yang, Fan; Yue, Chao; Zong, Qiu-Gang; Fu, Sui-Yan; Wang, Yongfu;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028420

wedge-like structure; inner magnetosphere; substorm injection; magnetospheric convection; ring current; magnetotail; Van Allen Probes

Simultaneously Formed Wedge-Like Structures of Different Ion Species Deep in the Inner Magnetosphere

In this study, ion data from the Helium, Oxygen, Proton, and Electron (HOPE) spectrometers onboard Van Allen Probes reveal the existence of wedge-like structures of O+, He+, and H+ ions deep in the inner magnetosphere. The behaviors of the wedge-like structures in terms of temporal evolution, spatial distribution, upper energy limit, as well as dependence on solar wind and different geomagnetic indices are investigated from both event studies of several consecutive orbits on 3 February 2013 and the subsequent statistical ana ...

Ren, Jie; Zong, Q.; Yue, C.; Zhou, X.; . Y. Fu, S; Spence, H.; Funsten, H.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028192

wedge-like structures; Ring current ions; inner magnetosphere; Substorm Injections; Van Allen Probes

A New Approach to Constructing Models of Electron Diffusion by EMIC Waves in the Radiation Belts

Electromagnetic ion cyclotron (EMIC) waves play an important role in relativistic electron losses in the radiation belts through diffusion via resonant wave-particle interactions. We present a new approach for calculating bounce and drift-averaged EMIC electron diffusion coefficients. We calculate bounce-averaged diffusion coefficients, using quasi-linear theory, for each individual Combined Release and Radiation Effects Satellite (CRRES) EMIC wave observation using fitted wave properties, the plasma density and the backgrou ...

Ross, J.; Glauert, S.; Horne, R.; Watt, C.; Meredith, N.; Woodfield, E.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088976

Radiation belts; EMIC waves; electron diffusion; Van Allen Probes

Storm Time Plasma Pressure Inferred From Multimission Measurements and Its Validation Using Van Allen Probes Particle Data

The k-nearest-neighbor technique is used to mine a multimission magnetometer database for a subset of data points from time intervals that are similar to the storm state of the magnetosphere for a particular moment in time. These subsets of data are then used to fit an empirical magnetic field model. Performing this for each snapshot in time reconstructs the dynamic evolution of the magnetic and electric current density distributions during storms. However, because weaker storms occur more frequently than stronger storms, th ...

Stephens, G.; Bingham, S.; Sitnov, M.; Gkioulidou, M.; Merkin, V.; Korth, H.; Tsyganenko, N.; . Y. Ukhorskiy, A;

YEAR: 2020     DOI: https://doi.org/10.1029/2020SW002583

storms; empirical geomagnetic field; ring current; data mining; eastward current; plasma pressure; Van Allen Probes

Dynamic Properties of Particle Injections Inside Geosynchronous Orbit: A Multisatellite Case Study

Four closely located satellites at and inside geosynchronous orbit (GEO) provided a great opportunity to study the dynamical evolution and spatial scale of premidnight energetic particle injections inside GEO during a moderate substorm on 23 December 2016. Just following the substorm onset, the four spacecraft, a LANL satellite at GEO, the two Van Allen Probes (also called “RBSP”) at ~5.8 RE, and a THEMIS satellite at ~5.3 RE, observed substorm-related particle injections and local dipolarizations near the central meridi ...

Motoba, T.; Ohtani, S.; Claudepierre, S.; Reeves, G.; . Y. Ukhorskiy, A; Lanzerotti, L.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028215

deep particle injections; dipolarizations; substorms; localized DF; Van Allen Probes

New Insights From Long-Term Measurements of Inner Belt Protons (10s of MeV) by SAMPEX, POES, Van Allen Probes, and Simulation Results

The Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX) mission provided long-term measurements of 10s of megaelectron volt (MeV) inner belt (L < 2) protons (1992–2009) as did the Polar-orbiting Operational Environmental Satellite-18 (POES-18, 2005 to present). These long-term measurements at low-Earth orbit (LEO) showed clear solar cycle variations which anticorrelate with sunspot number. However, the magnitude of the variation is much greater than the solar cycle variation of galactic cosmic rays (>GeV) tha ...

Li, Xinlin; Xiang, Zheng; Zhang, Kun; Khoo, Lengying; Zhao, Hong; Baker, Daniel; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028198

Inner radiation belt; Inner Belt Proton; Solar cycle variation; Cosmic rays; neutron monitor; Low Earth Orbit satellite; Van Allen Probes

Dynamics of Energetic Electrons in the Slot Region During Geomagnetically Quiet Times: Losses Due to Wave-Particle Interactions Versus a Source From Cosmic Ray Albedo Neutron Decay (CRAND)

Earth s slot region, lying between the outer and inner radiation belts, has been identified as due to a balance between inward radial diffusion and pitch angle (PA) scattering induced by waves. However, recent satellite observations and modeling studies indicate that cosmic ray albedo neutron decay (CRAND) may also play a significant role in energetic electron dynamics in the slot region. In this study, using a drift-diffusion-source model, we investigate the relative contribution of all significant waves and CRAND to the dy ...

Xiang, Zheng; Li, Xinlin; Ni, Binbin; Temerin, M.; Zhao, Hong; Zhang, Kun; Khoo, Leng;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028042

Slot region; Wave-particle interaction; CRAND; energetic electrons; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the po ...

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Spatial Extent of Quasiperiodic Emissions Simultaneously Observed by Arase and Van Allen Probes on 29 November 2018

Recent availability of a considerable amount of satellite and ground-based data has allowed us to analyze rare conjugated events where extremely low and very low frequency waves from the same source region are observed in different locations. Here, we report a quasiperiodic (QP) emission, showing one-to-one correspondence, observed by three satellites in space (Arase and the Van Allen Probes) and a ground station. The main event was on 29 November 2018 from 12:06 to 13:08 UT during geomagnetically quiet times. Using the po ...

Martinez-Calderon, C.; Němec, F.; Katoh, Y.; Shiokawa, K.; Kletzing, C.; Hospodarsky, G.; Santolik, O.; Kasahara, Y.; Matsuda, S.; Kumamoto, A.; Tsuchiya, F.; Matsuoka, A.; Shoji, M.; Teramoto, M.; Kurita, S.; Miyoshi, Y.; Ozaki, M.; Nishitani, N.; Oinats, A.; Kurkin, V.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028126

VLF/ELF; spatial extent; conjugated events; ERG; RBSP; quasiperiodic emissions; Van Allen Probes

Properties of Lightning Generated Whistlers Based on Van Allen Probes Observations and Their Global Effects on Radiation Belt Electron Loss

Lightning generated whistlers (LGWs) play an important role in precipitating energetic electrons in the Earth s inner radiation belt and beyond. Wave burst data from the Van Allen Probes are used to unambiguously identify LGWs and analyze their properties at L < 4 by extending their frequencies down to ~100 Hz for the first time. The statistical results show that LGWs typically occur at frequencies from 100 Hz to 10 kHz with the major wave power below the equatorial lower hybrid resonance frequency, and their wave ampli ...

Green, A.; Li, W.; Ma, Q.; Shen, X.-C.; Bortnik, J.; Hospodarsky, G.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL089584

lightning generated whistlers; electron precipitation; Inner radiation belt; hiss; VLF transmitter waves; global distribution; Van Allen Probes

Global Survey of Plasma Sheet Electron Precipitation due to Whistler Mode Chorus Waves in Earth s Magnetosphere

Whistler mode chorus waves can scatter plasma sheet electrons into the loss cone and produce the Earth s diffuse aurora. Van Allen Probes observed plasma sheet electron injections and intense chorus waves on 24 November 2012. We use quasilinear theory to calculate the precipitating electron fluxes, demonstrating that the chorus waves could lead to high differential energy fluxes of precipitating electrons with characteristic energies of 10–30 keV. Using this method, we calculate the precipitating electron flux from 2012 t ...

Ma, Q.; Connor, H.; Zhang, X.-J.; Li, W.; Shen, X.-C.; Gillespie, D.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Claudepierre, S.; Reeves, G.; Spence, H.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088798

Chorus wave; electron precipitation; plasma sheet electron; Van Allen Probes observation; Van Allen Probes

Origin of Electron Boomerang Stripes: Localized ULF Wave-Particle Interactions

Ultralow frequency (ULF) wave-particle interactions play a significant role in the radiation belt dynamic process, during which drift resonance can accelerate and transport energetic electrons in the outer radiation belt. Observations of wave-electron drift resonance are characterized by quasiperiodic straight or “boomerang-shaped” stripes in the pitch angle spectrogram. Here we present an ULF wave event on 1 December 2015, during which both kinds stripes were observed by Van Allen Probes A and B, respectively. Using the ...

Zhao, X.; Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Yue, Chao; Chen, X.; Liu, Y.; Blake, J.; Claudepierre, S.; Reeves, G.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087960

boomerang-shaped stripes; ULF waves; drift resonance; time of flight; Van Allen Probes

The Modulation of Plasma and Waves by Background Electron Density Irregularities in the Inner Magnetosphere

The background cold electron density plays an important role in plasma and wave dynamics. Here, we investigate an event with clear modulation of the particle fluxes and wave intensities by background electron density irregularities based on Van Allen Probes observations. The energies at the peak fluxes of protons and Helium ions of 100 eV to several keV are well correlated with the total electron density variation. Intense electromagnetic ion cyclotron (EMIC) and magnetosonic (MS) waves are simultaneously observed in the hi ...

Yue, Chao; Ma, Qianli; Jun, Chae-Woo; Bortnik, Jacob; Zong, Qiugang; Zhou, Xuzhi; Jang, Eunjin; Reeves, Geoffrey; Spence, Harlan; Wygant, John;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088855

electron density irregularities; electromagnetic ion cyclotron; magnetosonic waves; suprathermal particles; Wave-particle interaction; wave growth rate; Van Allen Probes

A Short-lived Three-Belt Structure for sub-MeV Electrons in the Van Allen Belts: Time Scale and Energy Dependence

In this study we focus on the radiation belt dynamics driven by the geomagnetic storms during September 2017. Besides the long-lasting three-belt structures of ultrarelativistic electrons (>2 MeV, existing for tens of days), which has been studied intensively during the Van Allen Probe era, it is found that magnetospheric electrons of hundreds of keVs can also have three-belt structures at similar L extent during storm time. Measurements of 500–800 keV electrons from MagEIS instrument onboard Van Allen Probes show double- ...

Hao, Y.; Zong, Q.-G.; Zhou, X.-Z.; Zou, H.; Rankin, R.; Sun, Y.; Chen, X.; Liu, Y.; . Y. Fu, S; Baker, D.; Spence, H.; Blake, J.; Reeves, G.; Claudepierre, S.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028031

storage ring; three-belt structure; hiss wave; electron lifetime; Radial Transport; Van Allen Probes

Defining Radiation Belt Enhancement Events Based on Probability Distributions

We present a methodology to define moderate, strong, and intense space weather events based on probability distributions. We have illustrated this methodology using a long-duration, uniform data set of 1.8–3.5 MeV electron fluxes from multiple LANL geosynchronous satellite instruments, but a strength of this methodology is that it can be applied uniformly to heterogeneous data sets. It allows quantitative comparison of data sets with different energies, units, orbits, and so forth. The methodology identifies a range of ti ...

Reeves, Geoffrey; Vandegriff, Elizabeth; Niehof, Jonathan; Morley, Steven; Cunningham, Gregory; Henderson, Michael; Larsen, Brian;

YEAR: 2020     DOI: https://doi.org/10.1029/2020SW002528

Radiation belts; methods; geosynchronous; energetic particles; hazards; Solar Cycle; Van Allen Probes

Simulations of Electron Flux Oscillations as Observed by MagEIS in Response to Broadband ULF Waves

Coherent electron flux oscillations of hundreds of keV are often observed by the Van Allen Probes in the magnetosphere during quiet times in association with ultralow frequency (ULF) waves. They are observed in the form of periodic flux fluctuations, with a drift frequency that is energy dependent, but are not associated with drift echoes following storm- or substorm-related energetic particle injections. Instead, they are associated with the resonant interaction of electrons with ULF waves and are an indication of ongoing e ...

Sarris, Theodore; Li, Xinlin; Temerin, Michael; Zhao, Hong; Khoo, Leng; Turner, Drew; Liu, Wenlong; Claudepierre, Seth;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027798

electron flux oscillations; ULF waves; Magnetosphere; Radiation belts; radial diffusion; particle tracing simulations; Van Allen Probes

Conjugate Observations of Quasiperiodic Emissions by the Van Allen Probes Spacecraft and Ground-Based Station Kannuslehto

Whistler mode waves observed in the Earth s inner magnetosphere at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity are called quasiperiodic (QP) emissions. Conjugate measurements of QP events at several different locations can be used to estimate their spatial extent and spatiotemporal variability. Results obtained using conjugate QP measurements provided by the ground-based station Kannuslehto (L≈5.5) and the Van Allen Probes spacecraft (L shells between about ...

Bezděková, B.; Němec, F.; Manninen, J.; Hospodarsky, G.; Santolik, O.; Kurth, W.; Hartley, D.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027793

Van Allen Probes

Global Model of Whistler Mode Chorus in the Near-Equatorial Region (|λm|<  18°)

We extend our database of whistler mode chorus, based on data from seven satellites, by including ∼3 years of data from Radiation Belt Storm Probes (RBSP)-A and RBSP-B and an additional ∼6 years of data from Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A, THEMIS-D, and THEMIS-E. The new database allows us to probe the near-equatorial region in detail, revealing new features. In the equatorial source region, |λm|<6°, strong wave power is most extensive in the 0.1–0.4fce bands in the r ...

Meredith, Nigel; Horne, Richard; Shen, Xiao-Chen; Li, Wen; Bortnik, Jacob;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL087311

whistler mode chorus; wave-particle interactions; Radiation belts; Van Allen Probes

Lifetimes of Relativistic Electrons as Determined From Plasmaspheric Hiss Scattering Rates Statistics: Effects of ωpe/Ωce and Wave Frequency Dependence on Geomagnetic Activity

Whistler-mode hiss waves generally determine MeV electron lifetimes inside the plasmasphere. We use Van Allen Probes measurements to provide the first comprehensive statistical survey of plasmaspheric hiss-driven quasi-linear pitch-angle diffusion rates and lifetimes of MeV electrons as a function of L*, local time, and AE index, taking into account hiss power, electron plasma frequency to gyrofrequency ratio ωpe/Ωce, hiss frequency at peak power ωm, and cross correlations of these parameters. We find that during geomagne ...

Agapitov, O.; Mourenas, D.; Artemyev, A.; Claudepierre, S.; Hospodarsky, G.; Bonnell, J.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088052

electron lifetimes; plasmasphere; hiss waves; wave-particle interactions; Van Allen Probes

Simultaneous Observations of Localized and Global Drift Resonance

In this study, we present Van Allen Probe observations showing that seed (hundreds of keV) and core ( 1 MeV) electrons can resonate with ultra-low-frequency (ULF) wave modes with distinctive m values simultaneously. An unusual electron energy spectrogram with double-banded resonant structure was recorded by energetic particle, composition, and thermal plasma (ECT)-magnetic electron ion spectrometer (MagEIS) and, meanwhile, boomerang stripes in pitch angle spectrogram appeared at the lower energy band. A localized drift reson ...

Hao, Y.; Zhao, X.; Zong, Q.-G.; Zhou, X.-Z.; Rankin, R.; Chen, X.; Liu, Y.; . Y. Fu, S; Blake, J.; Reeves, G.; Claudepierre, S.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020GL088019

drift resonance; ULF waves; Radiation Belt Dynamics; boomerang stripes; azimuthal wave number; multiple resonances; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Abstract Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: 10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

Abstract We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: 10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitud ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Whistler Mode Quasiperiodic Emissions: Contrasting Van Allen Probes and DEMETER Occurrence Rates

Quasiperiodic emissions are magnetospheric whistler mode waves at frequencies between about 0.5 and 4 kHz which exhibit a nearly periodic time modulation of the wave intensity. We use large data sets of events observed by the Van Allen Probes in the equatorial region at larger radial distances and by the low-altitude DEMETER spacecraft. While Van Allen Probes observe the events at all local times and longitudes, DEMETER observations are limited nearly exclusively to the daytime and significantly less frequent at the longitud ...

Němec, F.; Santolik, O.; Hospodarsky, G.; Hajoš, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027918

quasiperiodic emissions; QP emissions; DEMETER; RBSP; Van Allen Probes

Localization of the Source of Quasiperiodic VLF Emissions in the Magnetosphere by Using Simultaneous Ground and Space Observations: A Case Study

We study quasiperiodic very low frequency (VLF) emissions observed simultaneously by Van Allen Probes spacecraft and Kannuslehto and Lovozero ground-based stations on 25 December 2015. Both Van Allen Probes A and B detected quasiperiodic emissions, probably originated from a common source, and observed on the ground. In order to locate possible regions of wave generation, we analyze wave-normal angles with respect to the geomagnetic field, Poynting flux direction, and cyclotron instability growth rate calculated by using the ...

Demekhov, A.; Titova, E.; Maninnen, J.; Pasmanik, D.; Lubchich, A.; Santolik, O.; Larchenko, A.; Nikitenko, A.; Turunen, T.;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA027776

quasiperiodic VLF emissions; Cyclotron instability; wave propagation; Magnetosphere; whistler mode waves; Van Allen Probes

A Multi-Instrument Approach to Determining the Source-Region Extent of EEP-Driving EMIC Waves

Abstract Recent years have seen debate regarding the ability of electromagnetic ion cyclotron (EMIC) waves to drive EEP (energetic electron precipitation) into the Earth s atmosphere. Questions still remain regarding the energies and rates at which these waves are able to interact with electrons. Many studies have attempted to characterize these interactions using simulations; however, these are limited by a lack of precise information regarding the spatial scale size of EMIC activity regions. In this study we examine a fort ...

Hendry, A.; Santolik, O.; Miyoshi, Y.; Matsuoka, A.; Rodger, C.; Clilverd, M.; Kletzing, C.; Shoji, M.; Shinohara, I.;

YEAR: 2020     DOI: 10.1029/2019GL086599

EMIC waves; electron precipitation; subionospheric VLF; Van Allen Probes; AARDDVARK; Arase

Fine Harmonic Structure of Equatorial Noise with a Quasiperiodic Modulation

Abstract Equatorial noise emissions (fast magnetosonic waves) are electromagnetic waves observed routinely in the equatorial region of the inner magnetosphere. They propagate with wave vectors nearly perpendicular to the ambient magnetic field; that is, they are limited to frequencies below the lower hybrid frequency. The waves are generated by instabilities of ring-like proton distribution functions, which result in their fine harmonic structure with intensity maxima close to harmonics of the proton cyclotron frequency in t ...

Němec, F.; Tomori, A.; Santolik, O.; Boardsen, S.; Hospodarsky, G.; Kurth, W.; Pickett, J.; Kletzing, C.;

YEAR: 2020     DOI: 10.1029/2019JA027509

equatorial noise; Fast Magnetosonic Waves; quasiperiodic modulation; Van Allen Probes

Analysis of Electric and Magnetic Lightning-Generated Wave Amplitudes Measured by the Van Allen Probes

Abstract We provide a statistical analysis of both electric and magnetic field wave amplitudes of very low frequency lightning-generated waves (LGWs) based on the equivalent of 11.5 years of observations made by the Van Allen Probes encompassing ~24.6 × 106 survey mode measurements. We complement this analysis with data from the ground-based World Wide Lightning Location Network to explore differences between satellite and ground-based measurements. LGW mean amplitudes are found to be low compared with other whistler mod ...

Ripoll, J.-F.; Farges, T.; Malaspina, D.; Lay, E.; Cunningham, G.; Hospodarsky, G.; Kletzing, C.; Wygant, J.;

YEAR: 2020     DOI: 10.1029/2020GL087503

lightning-generated waves; electric wave power; magnetic wave power; WWLLN database; Radiation belts; Van Allen Probes

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electron instabi ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

plasmasphere; Plasmaspheric Hiss; Radiation belt; Van Allen Probes; Wave Dissipation; wave generation; wave propagation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Comprehensive Observations of Substorm-Enhanced Plasmaspheric Hiss Generation, Propagation, and Dissipation

Abstract Plasmaspheric hiss is an important whistler-mode emission shaping the Van Allen radiation belt environment. How the plasmaspheric hiss waves are generated, propagate, and dissipate remains under intense debate. With the five spacecraft of Van Allen Probes, Exploration of energization and Radiation in Geospace (Arase), and Geostationary Operational Environmental Satellites missions at widely spaced locations, we present here the first comprehensive observations of hiss waves growing from the substorm-injected electro ...

Liu, Nigang; Su, Zhenpeng; Gao, Zhonglei; Zheng, Huinan; Wang, Yuming; Wang, Shui; Miyoshi, Yoshizumi; Shinohara, Iku; Kasahara, Yoshiya; Tsuchiya, Fuminori; Kumamoto, Atsushi; Matsuda, Shoya; Shoji, Masafumi; Mitani, Takefumi; Takashima, Takeshi; Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Jun, Chae-Woo; Chang, Tzu-Fang; W. Y. Tam, Sunny; Kasahara, Satoshi; Yokota, Shoichiro; Keika, Kunihiro; Hori, Tomoaki; Matsuoka, Ayako;

YEAR: 2020     DOI: 10.1029/2019GL086040

Plasmaspheric Hiss; Radiation belt; plasmasphere; wave generation; wave propagation; Wave Dissipation

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

Upper Limit of Electron Fluxes Observed in the Radiation Belts

Radiation belt electrons have a complicated relationship with geomagnetic activity. We select electron measurements from 7 years of DEMETER and 6 years of Van Allen Probes data during geomagnetic storms to conduct statistical analysis focusing on the correlation between electron flux and Dst index. We report, for the first time, an upper limit of electron fluxes observed by both satellites throughout the inner and outer belts across a wide energy range from ?100s keV to multi-MeV. The upper flux limit is determined at diffe ...

Zhang, Kun; Li, Xinlin; Zhao, Hong; Xiang, Zheng; Khoo, Leng; Zhang, Wenxun; Hogan, Benjamin; Temerin, Michael;

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028511

electron; Radiation belt; statistics; upper limit; Van Allen Probes

2019

Global Survey and Empirical Model of Fast Magnetosonic Waves Over Their Full Frequency Range in Earth\textquoterights Inner Magnetosphere

We investigate the global distribution and provide empirical models of fast magnetosonic waves using the combined observations by the magnetometer and waveform receiver on board Van Allen Probes. The magnetometer measurements of magnetosonic waves indicate a significant wave power within the frequency range from the helium gyrofrequency to 20 Hz at L >= 4 in the afternoon sector, both inside and outside the plasmapause. The waveform receiver measurements indicate a significant wave power from 20 Hz to the lower hybrid resona ...

Ma, Q.; Li, W.; Bortnik, J.; Kletzing, C.; Kurth, W.; Hospodarsky, G.; Wygant, J.;

YEAR: 2019     DOI: 10.1029/2019JA027407

Empirical Fitting; Global Survey; magnetosonic waves; Van Allen Probes; Van Allen Probes observation

Particle Dynamics in the Earth\textquoterights Radiation Belts: Review of Current Research and Open Questions

The past decade transformed our observational understanding of energetic particle processes in near-Earth space. An unprecedented suite of observational systems were in operation including the Van Allen Probes, Arase, MMS, THEMIS, Cluster, GPS, GOES, and LANL-GEO magnetospheric missions. They were supported by conjugate low-altitude measurements on spacecraft, balloons, and ground-based arrays. Together these significantly improved our ability to determine and quantify the mechanisms that control the build-up and subsequent ...

Ripoll, Jean-Francois; Claudepierre, Seth; Ukhorskiy, Sasha; Colpitts, Chris; Li, Xinlin; Fennell, Joe; Crabtree, Chris;

YEAR: 2019     DOI: 10.1029/2019JA026735

inner magnetosphere; laboratory plasma experiments; Particle acceleration; particle loss; Radiation belts; Van Allen Probes

Comparison of Van Allen Probes Energetic Electron Data with Corresponding GOES-15 Measurements: 2012-2018

Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.;

YEAR: 2019     DOI: 10.1029/2019JA027331

energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes

How Sudden, Intense Energetic Electron Enhancements Correlate With the Innermost Plasmapause Locations Under Various Solar Wind Drivers and Geomagnetic Conditions

In this report, the relationship between innermost plasmapause locations (Lpp) and initial electron enhancements during both storm and nonstorm (Dst > -30 nT) periods are examined using data from the Van Allen Probes. The geomagnetic storms are classified into coronal mass ejection (CME)-driven and corotating interaction region (CIR)-driven storms to explore their influences on the initial electron enhancements, respectively. We also study nonstorm time electron enhancements and observe frequent, sudden (within two consecuti ...

Khoo, L.-Y.; Li, X.; Zhao, H.; Chu, X.; Xiang, Z.; Zhang, K.;

YEAR: 2019     DOI: 10.1029/2019JA027412

energetic electron enhancements; Plasmapause; Radiation Belt Dynamics; Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Remote Detection of Drift Resonance Between Energetic Electrons and Ultralow Frequency Waves: Multisatellite Coordinated Observation by Arase and Van Allen Probes

We report the electron flux modulations without corresponding magnetic fluctuations from unique multipoint satellite observations of the Arase (Exploration of Energization and Radiation in Geospace) and the Van Allen Probe (Radiation Belt Storm Probe [RBSP])-B satellites. On 30 March 2017, both Arase and RBSP-B observed periodic fluctuations in the relativistic electron flux with energies ranging from 500 keV to 2 MeV when they were located near the magnetic equator in the morning and dusk local time sectors, respectively. A ...

Teramoto, M.; Hori, T.; Saito, S.; Miyoshi, Y.; Kurita, S.; Higashio, N.; Matsuoka, A.; Kasahara, Y.; Kasaba, Y.; Takashima, T.; Nomura, R.; e, Nos\; Fujimoto, A.; Tanaka, Y.-M.; Shoji, M.; Tsugawa, Y.; Shinohara, M.; Shinohara, I.; Blake, J.; Fennell, J.F.; Claudepierre, S.G.; Turner, D.; Kletzing, C.; Sormakov, D.; Troshichev, O.;

YEAR: 2019     DOI: 10.1029/2019GL084379

Van Allen Probes

Cold Plasmaspheric Electrons Affected by ULF Waves in the Inner Magnetosphere: A Van Allen Probes Statistical Study

Six years of Van Allen Probes data are used to investigate cold plasmaspheric electrons affected by ultralow-frequency (ULF) waves in the inner magnetosphere (L<7) including spatial distributions, occurrence conditions, and resonant energy range. Events exhibit a global distribution within L= 4\textendash7 but preferentially occur at L\~5.5\textendash7 in the dayside, while there is higher occurrence rate in the duskside than dawnside. They can occur under different geomagnetic activities and solar wind velocities (VS), but ...

Ren, Jie; Zong, Q.; Zhou, X.; Spence, H.; Funsten, H.; Wygant, J.; Rankin, R.;

YEAR: 2019     DOI: 10.1029/2019JA027009

Cold plasmaspheric electrons; drift-bounce resonance; ULF waves; Van Allen Probes; Wave-particle interaction

Storm-time convection dynamics viewed from optical auroras

A series of statistical and event studies have demonstrated that the motion of patches in regions of Patchy Pulsating Aurora (PPA) is very close to, if not exactly, convection. Therefore, 2D maps of PPA motion provide us the opportunity to remotely sense magnetospheric convection with relatively high space and time resolution, subject to uncertainties associated with the mapping between the ionosphere and magnetosphere. In this study, we use THEMIS ASI (All Sky Imager) aurora observations combined with RBSP electric field an ...

Yang, Bing; Donovan, Eric; Liang, Jun; Ruohoniemi, Michael; McWilliams, Kathryn; Spanswick, Emma;

YEAR: 2019     DOI: 10.1016/j.jastp.2019.105088

Auroral streamer; convection; Fast earthward flows; pulsating aurora; Van Allen Probes

Variability of Quasilinear Diffusion Coefficients for Plasmaspheric Hiss

In the outer radiation belt, the acceleration and loss of high-energy electrons is largely controlled by wave-particle interactions. Quasilinear diffusion coefficients are an efficient way to capture the small-scale physics of wave-particle interactions due to magnetospheric wave modes such as plasmaspheric hiss. The strength of quasilinear diffusion coefficients as a function of energy and pitch angle depends on both wave parameters and plasma parameters such as ambient magnetic field strength, plasma number density, and co ...

Watt, C.; Allison, H.; Meredith, N.; Thompson, R.; Bentley, S.; Rae, I.; Glauert, S.; Horne, R.;

YEAR: 2019     DOI: 10.1029/2018JA026401

empirical; Magnetosphere; parameterization; stochastic; Van Allen Probes; wave-particle interactions



  1      2      3      4      5      6