Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 7 entries in the Bibliography.
Showing entries from 1 through 7
2019 |
Baker, D.N.; Zhao, H.; Li, X.; Kanekal, S.G.; Jaynes, A.N.; Kress, B.T.; Rodriguez, J.V.; Singer, H.J.; Claudepierre, S.G.; Fennell, J.F.; Hoxie, V.; Published by: Journal of Geophysical Research: Space Physics Published on: 11/2019 YEAR: 2019   DOI: 10.1029/2019JA027331 energetic particles; Magnetosphere:Inner; Magnetospheric configuration; Radiation belts; Space weather; Van Allen Probes |
Multiyear Measurements of Radiation Belt Electrons: Acceleration, Transport, and Loss In addition to clarifying morphological structures of the Earth\textquoterights radiation belts, it has also been a major achievement of the Van Allen Probes mission to understand more thoroughly how highly relativistic and ultrarelativistic electrons are accelerated deep inside the radiation belts. Prior studies have demonstrated that electrons up to energies of 10 megaelectron volts (MeV) can be produced over broad regions of the outer Van Allen zone on timescales of minutes to a few hours. It often is seen that geomagneti ... Baker, Daniel; Hoxie, Vaughn; Zhao, Hong; Jaynes, Allison; Kanekal, Shri; Li, Xinlin; Elkington, Scot; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2019 YEAR: 2019   DOI: 10.1029/2018JA026259 convection electric field; Energetic particle deep penetration; Low L Region; Radiation belts; Van Allen Probes |
2018 |
Modeling the Proton Radiation Belt With Van Allen Probes Relativistic Electron-Proton Telescope Data An empirical model of the proton radiation belt is constructed from data taken during 2013\textendash2017 by the Relativistic Electron-Proton Telescopes on the Van Allen Probes satellites. The model intensity is a function of time, kinetic energy in the range 18\textendash600 MeV, equatorial pitch angle, and L shell of proton guiding centers. Data are selected, on the basis of energy deposits in each of the nine silicon detectors, to reduce background caused by hard proton energy spectra at low L. Instrument response functio ... Selesnick, R.; Baker, D.; Kanekal, S.; Hoxie, V.; Li, X.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2018 YEAR: 2018   DOI: 10.1002/2017JA024661 |
2014 |
An impenetrable barrier to ultrarelativistic electrons in the Van Allen radiation belts Early observations1, 2 indicated that the Earth\textquoterights Van Allen radiation belts could be separated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. Subsequent studies3, 4 showed that electrons of moderate energy (less than about one megaelectronvolt) often populate both zones, with a deep \textquoteleftslot\textquoteright region largely devoid of particles between them. There is a region of dense cold plasma around the Earth known as the plasmasphere, the out ... Baker, D.; Jaynes, A.; Hoxie, V.; Thorne, R.; Foster, J.; Li, X.; Fennell, J.; Wygant, J.; Kanekal, S.; Erickson, P.; Kurth, W.; Li, W.; Ma, Q.; Schiller, Q.; Blum, L.; Malaspina, D.; Gerrard, A.; Lanzerotti, L.; Published by: Nature Published on: 11/2014 YEAR: 2014   DOI: 10.1038/nature13956 Magnetospheric physics; ultrarelativistic electrons; Van Allen Belts; Van Allen Probes |
2013 |
James Van Allen and His Namesake NASA Mission In many ways, James A. Van Allen defined and \textquotedblleftinvented\textquotedblright modern space research. His example showed the way for government-university partners to pursue basic research that also served important national and international goals. He was a tireless advocate for space exploration and for the role of space science in the spectrum of national priorities. Baker, D.; Hoxie, V.; Jaynes, A.; Kale, A.; Kanekal, S.; Li, X.; Reeves, G.; Spence, H.; Published by: Eos, Transactions American Geophysical Union Published on: 12/2013 YEAR: 2013   DOI: 10.1002/eost.v94.4910.1002/2013EO490001 |
Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a c ... Baker, D.; Kanekal, S.; Hoxie, V.; Batiste, S.; Bolton, M.; Li, X.; Elkington, S.; Monk, S.; Reukauf, R.; Steg, S.; Westfall, J.; Belting, C.; Bolton, B.; Braun, D.; Cervelli, B.; Hubbell, K.; Kien, M.; Knappmiller, S.; Wade, S.; Lamprecht, B.; Stevens, K.; Wallace, J.; Yehle, A.; Spence, H.; Friedel, R.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: 10.1007/s11214-012-9950-9 |
Since their discovery more than 50 years ago, Earth\textquoterights Van Allen radiation belts have been considered to consist of two distinct zones of trapped, highly energetic charged particles. The outer zone is composed predominantly of megaelectron volt (MeV) electrons that wax and wane in intensity on time scales ranging from hours to days, depending primarily on external forcing by the solar wind. The spatially separated inner zone is composed of commingled high-energy electrons and very energetic positive ions (mostly ... Baker, D.; Kanekal, S.; Hoxie, V.; Henderson, M.; Li, X.; Spence, H.; Elkington, S.; Friedel, R.; Goldstein, J.; Hudson, M.; Reeves, G.; Thorne, R.; Kletzing, C.; Claudepierre, S.; Published by: Science Published on: 04/2013 YEAR: 2013   DOI: 10.1126/science.1233518 |
1