Van Allen Probes Bibliography is from August 2012 through September 2021 Notice:
|
Found 10 entries in the Bibliography.
Showing entries from 1 through 10
2020 |
Abstract On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the ... Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: 10.1029/2019JA027424 EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering |
On 22 December 2015, the two Van Allen Probes observed two sets of electromagnetic ion cyclotron (EMIC) wave bursts during a close conjunction when both Probe A and Probe B were separated by 0.57 to 0.68 RE. The EMIC waves occurred during an active period in the recovery phase of a coronal mass ejection-driven geomagnetic storm. Both spacecraft observed EMIC wave bursts that had similar spatial structure within a 1–2 min time delay. The EMIC waves occurred outside the plasmasphere, within ΔL ≈ 1–2 of the plasmapau ... Sigsbee, K.; Kletzing, C. A.; Faden, J.; Jaynes, A. N.; Reeves, G.; Jahn, J.-M.; Published by: Journal of Geophysical Research: Space Physics Published on: 04/2020 YEAR: 2020   DOI: https://doi.org/10.1029/2019JA027424 EMIC waves; Plasmapause; Proton Anisotropy; Storm Recovery Phase; Van Allen Probes; pitch angle scattering |
The plasmasphere is a critical region of the magnetosphere. It is important for the evolution of Earth\textquoterights radiation belts. Waves in the plasmasphere interior (hiss) and vicinity (EMIC, chorus) help control the acceleration and loss of radiation belt particles. Thus, understanding the extent, structure, content, and dynamics of the plasmasphere is crucial to understanding radiation belt losses. The Van Allen Probes mission uses two methods to determine the total plasma density. First, the upper hybrid resonance ( ... Jahn, J.-M.; Goldstein, J.; Kurth, W.S.; Thaller, S.; De Pascuale, S.; Wygant, J.; Reeves, G.D.; Spence, H.E.; Published by: Journal of Geophysical Research: Space Physics Published on: 01/2020 YEAR: 2020   DOI: 10.1029/2019JA026860 cold plasma density; plasmasphere; spacecraft charging; Van Allen Probes; wave resonances |
2017 |
The Warm Plasma Composition in the Inner Magnetosphere during 2012-2015 Ionospheric heavy ions play an important role in the dynamics of Earth\textquoterights magnetosphere. The greater mass and gyro radius of ionospheric oxygen differentiates its behavior from protons at the same energies. Oxygen may have an impact on tail reconnection processes, and it can at least temporarily dominate the energy content of the ring current during geomagnetic storms. At sub-keV energies, multi-species ion populations in the inner magnetosphere form the warm plasma cloak, occupying the energy range between the ... Jahn, J.-M.; Goldstein, J.; Reeves, G.; Fernandes, P.; Skoug, R.; Larsen, B.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2017 YEAR: 2017   DOI: 10.1002/2017JA024183 geomagnetic activity; inner magnetosphere; plasma composition; plasma density; statistics; Van Allen Probes |
The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey The two full precessions in local time completed by the Van Allen Probes enable global specification of the near-equatorial inner magnetosphere plasma environment. Observations by the Helium-Oxygen-Proton-Electron (HOPE) mass spectrometers provide detailed insight into the global spatial distribution of electrons, H+, He+, and O+. Near-equatorial omnidirectional fluxes and abundance ratios at energies 0.1\textendash30 keV are presented for 2 <= L <= 6 as a function of L shell, magnetic local time (MLT), and geomagnetic activ ... Fernandes, Philip; Larsen, Brian; Thomsen, Michelle; Skoug, Ruth; Reeves, Geoffrey; Denton, Michael; Friedel, Reinhard; Funsten, Herbert; Goldstein, Jerry; Henderson, Michael; Jahn, örg-Micha; MacDonald, Elizabeth; Olson, David; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2017 YEAR: 2017   DOI: 10.1002/2017JA024160 inner magnetosphere; magnetospheric composition; plasma access; plasma convection; UBK modeling; Van Allen Probes |
2016 |
The relationship between the plasmapause and outer belt electrons We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15\textendash20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8\textendash7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1\textendash2 RE inside the plasmapause. ... Goldstein, J.; Baker, D.; Blake, J.; De Pascuale, S.; Funsten, H.; Jaynes, A.; Jahn, J.-M.; Kletzing, C.; Kurth, W.; Li, W.; Reeves, G.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 08/2016 YEAR: 2016   DOI: 10.1002/2016JA023046 Plasmapause; Plasmaspheric Hiss; Radiation belts; simulation; storm-time dropouts; Van Allen Probes |
2015 |
We present the first simultaneous observations of the in situ ions and global Energetic Neutral Atom (ENA) images of the composition-separated, medium-energy (~1\textendash50 keV) particle populations of the inner magnetosphere. The ENA emissions are mapped into L shell/magnetic local time space based on the exospheric density along the line of sight (LOS). The ENA measurement can then be scaled to determine an average ion flux along a given LOS. The in situ ion flux tends to be larger than the scaled ENAs at the same local ... Valek, P.; Goldstein, J.; Jahn, J.-M.; McComas, D.; Spence, H.; Published by: Journal of Geophysical Research: Space Physics Published on: 09/2015 YEAR: 2015   DOI: 10.1002/2015JA021151 |
Study of EMIC wave excitation using direct ion measurements With data from Van Allen Probes, we investigate EMIC wave excitation using simultaneously observed ion distributions. Strong He-band waves occurred while the spacecraft was moving through an enhanced density region. We extract from Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer measurement the velocity distributions of warm heavy ions as well as anisotropic energetic protons that drive wave growth through the ion cyclotron instability. Fitting the measured ion fluxes to multiple sinm-type distribution function ... Min, Kyungguk; Liu, Kaijun; Bonnell, John; Breneman, Aaron; Denton, Richard; Funsten, Herbert; Jahn, öerg-Micha; Kletzing, Craig; Kurth, William; Larsen, Brian; Reeves, Geoffrey; Spence, Harlan; Wygant, John; Published by: Journal of Geophysical Research: Space Physics Published on: 03/2015 YEAR: 2015   DOI: 10.1002/2014JA020717 EMIC wave excitation; observation; linear theory and hybrid simulation; Van Allen Probes |
2013 |
The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ... Spence, H.; Reeves, G.; Baker, D.; Blake, J.; Bolton, M.; Bourdarie, S.; Chan, A.; Claudpierre, S.; Clemmons, J.; Cravens, J.; Elkington, S.; Fennell, J.; Friedel, R.; Funsten, H.; Goldstein, J.; Green, J.; Guthrie, A.; Henderson, M.; Horne, R.; Hudson, M.; Jahn, J.-M.; Jordanova, V.; Kanekal, S.; Klatt, B.; Larsen, B.; Li, X.; MacDonald, E.; Mann, I.R.; Niehof, J.; O\textquoterightBrien, T.; Onsager, T.; Salvaggio, D.; Skoug, R.; Smith, S.; Suther, L.; Thomsen, M.; Thorne, R.; Published by: Space Science Reviews Published on: 11/2013 YEAR: 2013   DOI: DOI: 10.1007/s11214-013-0007-5 |
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 \%. The ... Funsten, H.; Skoug, R.; Guthrie, A.; MacDonald, E.; Baldonado, J.; Harper, R.; Henderson, K.; Kihara, K.; Lake, J.; Larsen, B.; Puckett, A.; Vigil, V.; Friedel, R.; Henderson, M.; Niehof, J.; Reeves, G.; Thomsen, M.; Hanley, J.; George, D.; Jahn, J.-M.; Cortinas, S.; Santos, Los; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.; Spence, H.; Cravens, J.; Suther, L.; Chen, J.; Published by: Space Science Reviews Published on: 08/2013 YEAR: 2013   DOI: 10.1007/s11214-013-9968-7 |
1